电厂锅炉蒸汽温度串级控制系统设计--大学毕业设计论文.doc
《电厂锅炉蒸汽温度串级控制系统设计--大学毕业设计论文.doc》由会员分享,可在线阅读,更多相关《电厂锅炉蒸汽温度串级控制系统设计--大学毕业设计论文.doc(53页珍藏版)》请在咨信网上搜索。
本科毕业设计论文 题 目 电厂锅炉蒸汽温度串级控制系统设计 专业名称 学生姓名 指导教师 毕业时间 2 毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得 及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作 者 签 名: 日 期: 指导教师签名: 日 期: 使用授权说明 本人完全了解 大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名: 日 期: 学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名: 日期: 年 月 日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权 大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名: 日期: 年 月 日 导师签名: 日期: 年 月 日 注 意 事 项 1.设计(论文)的内容包括: 1)封面(按教务处制定的标准封面格式制作) 2)原创性声明 3)中文摘要(300字左右)、关键词 4)外文摘要、关键词 5)目次页(附件不统一编入) 6)论文主体部分:引言(或绪论)、正文、结论 7)参考文献 8)致谢 9)附录(对论文支持必要时) 2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。 3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。 4.文字、图表要求: 1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写 2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画 3)毕业论文须用A4单面打印,论文50页以上的双面打印 4)图表应绘制于无格子的页面上 5)软件工程类课题应有程序清单,并提供电子文档 5.装订顺序 1)设计(论文) 2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订 电厂锅炉温度串级控制系统设计 摘 要 本文是针对锅炉蒸汽温度控制系统进行的分析和设计,而对锅炉蒸汽的良好控制是保证系统输出蒸汽温度稳定的前提,所以本系统采用串级控制系统,这样可以极大的消除控制系统工作中的各种干扰因素,是系统能在一个较为良好的状态下工作,同时锅炉过热器出口蒸汽温度在允许的范围内变化,并保护过热器管壁温度不超过允许的工作温度。 蒸汽温度是锅炉安全、高效、经济运行的重要参数,因此对蒸汽温度控制要求严格,过高的蒸汽温度会造成过热器,蒸汽管道及汽轮机因过大的热应力变形而毁坏;蒸汽温度过低,又会引起热效率降低影响经济运行。 本次设计主要考虑的部分是锅炉温度蒸汽控制系统设计,蒸汽过热系统包括一级过热器、减温器、二级过热器,锅炉气温控制系统主要包括过热器和再热蒸汽温度的调节。主要蒸汽温度与再热蒸汽温度的稳定对机组的安全经济运行是非常重要的。 本设计针对锅炉温度控制问题,综合应用过程控制理论以及近年来兴起的仿真技术、计算机远程控制、组态软件,设计了锅炉温度串级控制系统。首先,通过实验法建立锅炉的数学模型,得到锅炉温度的传递函数,通过对理论设计的控制方案进行仿真,得到较好的响应曲线,为实际控制系统的实现提供先决条件。其次,使用智能仪表作为控制器,组建现场仪表过程控制系统,通过参数整定,得到较好现场控制效果。再次,实现积分分离的PID控制算法。 关键词:蒸汽温度;串级控制系统;PID控制 Abstract This article is the analysis and design for boiler steam temperature control system , and a good control of the steam boiler system is to ensure the stability of the output steam temperature , so the system uses the cascade control system , which can greatly eliminate the control system work various confounding factors , the system can work in a relatively good condition , while the boiler superheater outlet steam temperature within the allowable range , and to protect the superheater tube wall temperature does not exceed the allowable operating temperature. Steam boiler temperature is safe, efficient and economic operation of important parameters , and therefore require strict temperature control of steam , high temperature steam can cause overheating , steam pipes and steam turbine thermal stress due to excessive deformation and destruction ; steam temperature is too low , would reduce the impact caused by the thermal efficiency of the economy . The main part of this design consideration is the temperature of the steam boiler control system design , steam superheater system includes primary superheater desuperheater secondary superheater , boiler temperature control system includes superheater and reheat steam temperature regulation . The main steam temperature and reheat steam temperature stability for safe and economic operation of the unit is very important. The design for the boiler temperature control problem , a comprehensive application process control theory and the recent rise of simulation technology, computer remote control, configuration software, designed the boiler temperature cascade control system . First, create a mathematical model through experimentation boilers , boiler temperature to obtain the transfer function of the control scheme of the theoretical design through simulation, get a better response curve, providing prerequisite for the realization of the actual control system. Secondly , the use of smart meters as a controller, field instrumentation process control system established by parameter tuning, get a better scene control. Again, the integral PID control algorithm to achieve separation . KEY WORDS: Steam temperature;Cascade Control System;PID control 目 录 摘 要 3 Abstract 4 第一章 绪论 9 1.1 毕业设计的选题意义 9 1.2 毕业设计的任务和要求 10 1.3主要技术指标 10 第二章 生产工艺概述 11 2.1 锅炉生产工艺简介 11 2.2 过热器的介绍 12 2.3过热蒸汽温度控制对象的动态特性 13 2.3.1 蒸汽流量扰动下过热汽温对象的动态特性 13 2.3.2 烟气热量扰动下过热汽温对象的动态特性 14 第三章 过热蒸汽温度控制原理及方案设计 18 3.1简单蒸汽温度控制系统 18 3.1.1简单回路控制蒸汽温度系统主要由调节器和控制对象组成 18 3.1.2 过热蒸汽控制系统的控制策略的设计 19 3.2复杂蒸汽温度控制系统 20 3.3串级控制系统的特点 20 3.4采用串级调节系统的条件 21 3.4.1串级调节系统需满足如下两个条件: 21 3.4.2.串级调节系统的分析 21 3.4.3过热蒸汽控制系统的控制策略的设计 22 3.5 串级控制系统主副回路确定 23 3.6 导前微分控制系统 24 3.6.1 导前微分控制系统的组成及原理 24 3.6.2 导前微分控制系统的分析 25 3.6.3 导前微分控制系统的整定 27 3.7 两种汽温自动控制系统的比较 30 第四章 过热蒸汽温度控制系统的设计 32 4.1系统控制参数的确定 32 4.1.1主变量的选择 32 4.1.2副变量的选择 32 4.1.3操纵变量的选择 32 4.2执行器的选择 33 4.3控制仪表的选择 33 4.4串级控制系统主副回路和主副调节器选择 34 4.5控制器选择 36 第五章 基于MATLAB的系统仿真 37 5.1电厂锅炉蒸汽温度串级控制系统的建模 37 5.1.1机理法 37 5.1.2测试法 37 5.1.3阶跃响应法 38 5.2 PID控制器原理 38 5.2.1 PID控制器简介 38 5.2.2 PID控制系统 40 5.3 PID控制参数的整定及方法 40 5.3.1 PID控制参数的整定简介 40 5.3.2 PID控制参数整定方法 41 5.4电厂锅炉蒸汽温度串级控制系统的MATLAB仿真 44 5.4.1 被控对象的仿真模型 44 5.4.2 串级控制系统的仿真 45 致 谢 51 参考文献 52 毕业小结 49 绪论 1.1 毕业设计的选题意义 蒸汽温度是锅炉安全、高效、经济运行的主要参数,因此对蒸汽温度控制要求严格。过高的蒸汽温度会造成过热器,蒸汽管道及汽轮机因过大的热应力变形而毁坏;蒸汽温度过低,又会引起热效率降低,影响经济运行。锅炉控制现场环境恶劣,采用传统的基于模拟技术的控制器、仪器仪表或单片机,不仅结构比较复杂,效率比较低,而且可靠性也不高。 本次课设设计的主要考虑部分是锅炉蒸汽温度控制系统的设计。蒸汽过热系统包括一级过热器、减温器、二级过热器。锅炉汽温控制系统主要包括过热汽和再热蒸汽温度的的调节。主要蒸汽温度与再热蒸汽温度的稳定对机组的安全经济运行时非常重要的。过热蒸汽温度控制的任务是维持过热器出口温度在允许的范围之内,并保护过热器,使其管壁温度不超允许的工作温度。 过热蒸汽温度是锅炉汽水系统中的温度的最高点,过热蒸汽温度过高或是过低,对锅炉运行及蒸汽设备是不利的。蒸汽温度过高会使过热器管壁金属强度下降,以至烧坏过热器的高温段,严重影响安全。一般规定过热器的温度与规定值的暂时偏差不超过+-10摄氏度,长期偏差不超过+-5摄氏度。 如果过热蒸汽温度偏低,则会降低电厂的工作效率,同时使汽轮机后几级的蒸汽湿度增加,引起叶片磨损。据估计,温度每降低5摄氏度,热经济性将下降约1%;且汽温偏低会使汽轮机尾部蒸汽温度升高,甚至使之带水,严重影响汽轮机的安全运行。一般规定过热气温下限不低于其额定值10 摄氏度。通常,高参数电厂都要求保持过热汽温在540摄氏度的范围内。 由于汽温对象的复杂性,给汽温控制带来许多的困难,其主要难点表现在以下两个方面: 1. 由于过热器是一个多容且延迟较大的惯性环节,设备结构设计与控制要求存在很多矛盾,所以影响汽温变化的因素很多,例如,蒸汽量、减温水给水量、烟气侧的过剩空气系数和温度等都可能引起汽温变化。 2. 随着机组容量和参数的增加,蒸汽的过热受热面的比例加大,使其延迟和惯性更大,从而进一步加大了汽温控制的难度。 1.2 毕业设计的任务和要求 通过毕业设计使学生对所学自动化基本知识和专业理论加深理解,掌握工业生产过程控制系统设计和仿真的基本方法,培养独立开展设计工作的能力。 要求在毕业设计中: 1.分析研究火力发电厂锅炉蒸汽温度控制要求,特点及控制系统设计方法,充分理解课题意义,设计电厂锅炉蒸汽温度串级控制系统,达到要求的主要技术指标; 2.开展控制系统方案论证,并建立系统数学模型,进行温度控制系统分析; 3.查找相关资料,设计串级控制系统控制规律,并进行参数整定; 4.在完成基本设计的基础上,进行数学仿真,并验证设计; 5.撰写毕业设计论文。 1.3主要技术指标 1.350MW机组锅炉过热蒸汽温度保持在; 在减温水流量变化时,锅炉过热蒸汽温度控制系统能稳定运行,衰减系数; 2.过程动态性能指标为: 1)温度波动最大偏差不超过; 2)过渡过程时间不大于; 3. 锅炉稳定运行时,过热蒸汽温度应在给定值的范围内; 第二章 生产工艺概述 2.1 锅炉生产工艺简介 锅炉是过程工业中必不可少的动力设备。它所产生的蒸汽不仅可提供生产过程作为热源,而且还可以作为蒸汽透平的动力源。在热电厂中按锅炉设备所使用的燃料的种类、燃烧设备、锅体形式、锅炉功能和运行要求的不同,锅炉生产有各种不同的流程。常见锅炉设备的工业流程如图2-1所示: 图2-1锅炉设备的主要工艺流程 蒸汽发生系统由给水泵、给水调节阀、省煤器、汽包及循环管组成。燃料和热空气按照一定的比例进入燃烧室燃烧,产生的热量传递给蒸汽发生系统,生产饱和蒸汽Ds,然后经过过热器成一定气温的过热蒸汽D,汇集至蒸汽母管。压力为Pm的过热蒸汽,经负荷设备调节阀供给生产负荷使用。与此同时,燃烧过程中产生烟气,将饱和的蒸汽变成过热蒸汽后,经省煤器预热锅炉预热空气,最后经引风机送往烟筒排入大气。 锅炉设备的控制任务:根据生产负荷的要求,供应一定压力或温度的蒸汽,同时要使锅炉在安全、经济的条件下运行。按照这些控制要求,锅炉设备将有如下主要的控制系统: a) 锅炉气包水位控制系统:主要是保持汽包内部的水位平衡,使积水量适应锅炉的蒸汽汽量,维持汽包中水位在工艺允许的范围内; b) 锅炉燃烧系统的控制:其控制方案要求满足燃烧所产生的热量,适应蒸汽负荷的需要,使燃烧与空气量保持一定的比值,保证燃烧的经济性和锅炉的安全运行,使引风量与送风量相适应,保持炉膛负压在一定范围; c) 过热蒸汽系统控制:主要使过热器出口温度在保持在允许范围内,并保证管壁温度不超过工艺允许范围; d) 锅炉水处理过程:主要使锅炉给水的水性能指标达到工艺要求。 2.2 过热器的介绍 过热器定义:锅炉中将蒸汽从饱和温度进一步加热至过热温度的部件。过热器概述:过热蒸汽温度的高低取决于锅炉的压力,蒸发量、刚才的耐高温性能及燃料与刚才的比价等因素,对电站锅炉来说,低压锅炉的温度一般为350~375摄氏度,过热器前布置有大量对蒸汽管束,进入过热器的烟温约在700摄氏度上下,中压锅炉多为烧煤粉或重油的室燃炉,其过热汽温为450摄氏度,这时的炉膛辐射传热的烟温可达1000摄氏度左右。高压锅炉,尤其超高压锅炉,加热水的热量和过热热量增大很多,而蒸发热减少,当有中间再过热时,情况更为突出,这时必须把一部分过热器受热布置在炉膛内,是吸收部分辐射热。 为了提高电厂热力循环的效率,蒸汽的初参数不断提高。蒸汽压力的提高要求相应的提高过热蒸汽温度,否则蒸汽在汽轮机膨胀终了的湿度就会过高,影响汽轮机的安全。但蒸汽温度的增高需受到过热器刚才高湿强度性能的限制,因而采用了中间再热,即高压高温蒸汽在汽轮机内膨胀至某一中间压力后,引到布置在锅炉烟道内的再热器,再一次加热升温,然后又回到汽轮机的中、低压缸,继续膨胀至凝汽器压力,这样蒸汽膨胀终了的湿度可控制在允许的范围内。超高压机组采用中间再热时,理论上可使循环经济性相对提高6~8%,在实际设备中,由于有压降损失,热经济性的提高比理论值稍低。 由于过热器管壁金属在锅炉受压部件中承受的温度最高,因此必须采用耐高温的优质低碳钢和各种铬合金钢等,在最高的温度部分有时还要用奥氏体铬镍不锈钢。锅炉运行中如果管子承受的温度超过材料的持久强度、疲劳强度或表面氧化所容许的温度限值,则会发生管子爆裂等事故。 2.3过热蒸汽温度控制对象的动态特性 过热蒸汽温度调节对象的动态特性是指引起过热汽温变化的扰动与汽温之间的动态关系。引起过热蒸汽温度变化的原因很多,如蒸汽流量变化、燃烧工况变化、锅炉给水温度变化、进入过热器的蒸汽温度变化、流经过热器的烟气的温度和流速变化、锅炉受热面结垢、给水母管压力和减温水量等等,这些因素还可能相互制约。归结起来,过热汽温调节对象的扰动主要来自三个方面:蒸汽流量变化(负荷变化),加热烟气的热量变化和减温水流量变化(过热器入口汽温变化)。通过对过热汽温调节对象作阶跃扰动试验,可得到在不同扰动作用下的对象动态特性。 2.3.1 蒸汽流量扰动下过热汽温对象的动态特性 蒸汽流量扰动下过热汽温对象的动态特性引起蒸汽流量扰动的原因有两个:一是蒸汽母管的压力变化:二是汽轮机调节阀的开度变化。结构形式不同的过热器,在相同蒸汽流量的扰动下,汽温变化的特性是不一样的。当锅炉负荷扰动时,蒸汽流量的变化使沿整个过热器管路长度上各点的蒸汽流速几乎同时改变,从而改变过热器的对流放热系数,使沿整个过热器各点的蒸汽温度几乎同时改变,因而汽温反应较快。其传递函数可以表示为: 式中, K:棚炉负荷扰动时被控对象的放大系数; :一负荷扰动后对象的滞后时间; TD_:对象的时间常数; 从阶跃响应曲线可知,其特点是:有延迟、有惯性、有自平衡能力,但其延迟和惯性都比较小,即时间常数TD和滞后时间都比较小,且几较小。动态特性曲线如图2-2: 图2-2锅炉负荷扰动下过热器出口汽温的阶跃响应曲线 2.3.2 烟气热量扰动下过热汽温对象的动态特性 烟气传热量扰动引起的原因很多,如给粉机给粉不均匀、煤中水分改变、蒸发受热面结渣、过剩空气系数改变、汽包给水温度变化、燃烧火炽中心位置改变等。当烟气热量扰动(烟气温度和流速产生变化)时,由于烟气流速和温度的变化也是沿整个过热器同时改变的,因而沿过热器整个长度使烟气传递热量也同时变化,所以汽温反应较快,时间常数和延迟均比其它扰动小。和蒸汽流量扰动的影响类似,烟气热量的扰动也几乎同时影响过热器管道长度方向各处的蒸汽温度,故它是一个具有自平衡能力、滞后和惯性都不大的对象,其传递函数可表示为一个二阶系统,即: 式中:T为烟气温度 但对象特征总的特点是:有迟延,有惯性,有自平衡能力,其动态特性曲线如图2-3所示: 图2-3烟气热量扰动下过热汽温的阶跃响应曲线 2.3.3减温水量扰动下过热汽温对象的动态特性 常见的减温方式有两种:喷水式减温和表面式减温,前者的效果比后者好。减温器一般装在末级过热器高温段前面,一方面保护了过热器高温段;另一方面又改善了调节性能。这种过热器的安装方法与在饱和侧装设表面式减温器相比,延迟时间能减小1/4。其动态特性曲线如下图所示。从图中可以看出,其特点也是有迟延、有惯性、有自平衡能力的。但是由于现代大型锅炉的过热器管路很长,因而当减温水流量扰动时,汽温反应较慢。 对于一般高、中压锅炉,当减温水流量扰动时,汽温的迟延时间r=30--60s,时间常数T0≈l00s,而当烟气侧扰动时f≈10~20s,Z<l00s 。 图2-4减温水扰动下过热器出IZl汽温的阶跃响应曲线 由图2-4可见,在减温水流量扰动下,减温器出口过热汽温θl的响应比过热器出口汽温θ2快得多,可以肯定,在喷水减温过热蒸汽温度调节系统中,以θl作为导前信号构成串级调节系统,可大大改善控制系统的性能。在减温水流量扰动下,导前汽温的传递函数可表示为: 式中: Kl一减温水流量扰动下导前汽温的放大系数; Tl一为减温水流量扰动下导前汽温对象的时间常数; n1一阶数; 在减温水流量扰动下,过热汽温的传递函数可表示为: 式中: K0一减温水流量扰动下过热蒸汽温度的放大系数; T0--为减温水流量扰动下过热蒸汽温度的时间常数 ---阶数: 对象惰性区的传递函数可表示为: 式中: K2—减温水流量扰动下惰性区温度的放大系数; T2一为减温水流量扰动下惰性区温度的时间常数; 一阶数; 由于惰性区的传递函数无法直接通过实验求出,所以可由实验得到的Kl、 Tl、和K0、T0、来求取,计算公式如下: 总的来说,根据对过热蒸汽温度调节对象做阶跃扰动试验得出的动态特性 曲线可知,它们均为有延迟的惯性环节,但各自的动态特性参数值有较大的差别。 第三章 过热蒸汽温度控制原理及方案设计 过热蒸汽温度控制系统采用两级喷水减温,这样做的目的有两个,一是为了使汽温调节更灵敏,减小热惯性,二是为了保护过热器。第一级喷水减温器布置在前屏过热器之后,调节量较大且调节惰性大,用来调节因负荷、给水温度和燃料性质变化而引起的气温变化,为粗调。另外它还有保护屏式过热器和对流过热器受热面的作用。第二级喷水减温器布置在高温对流过热器(末级过热器)之前,这一级热惯性小,可保证出口汽温能得到迅速调节。温度器共有四只,每级安装两只,每只喷水量为每级喷水量的一半。减温水源为自制冷凝水。目前,过热汽温的控制方案很多,而且随着自动控制技术和计算机技术的不断。 发展,新的控制方法不断出现,汽温控制的质量也不断提高。传统的汽温控制系统有两种:单回路控制系统和串级气温控制系统。 3.1简单蒸汽温度控制系统 3.1.1简单回路控制蒸汽温度系统主要由调节器和控制对象组成 它们的特性将决定控制系统的控制质量,因此讨论控制对象的特征参数和调节器的调节参数对控制质量的影响是非常必要的。对象动态特性是确定系统结构、调节器的控制规律、设置调节器参数的依据,那么根据对象动态特性和生产过程对控制质量的要求,确定调节参数的数值是控制系统投入前要做的一项重要工作。当然控制系统设计是否合理、控制仪表的安装和调试是否正确等是控制系统能否使用的保障。简单控制回路的结构示意图如图3-1所示: 图3-1简单控制回路的结构示意图 从图3-1可知该系统主要由被控对象——过热器管道,执行机构——气动喷水阀门(执行器),检测变送部件——热电偶或温度变送器,控制系统核心部件——控制器(调节器)组成。其中,被调量(测量值)——蒸汽温度,调节量(控制信号卜喷水流量,干扰信号——炉膛燃烧工况。简单蒸汽温度控制系统原理方框图如图3-2所示: 图3-2简单控制系统方框图 3.1.2 过热蒸汽控制系统的控制策略的设计 当蒸汽温度的测量值等于设定值时,喷水阀门不动,则系统处在动态平衡状态,此时,若炉膛燃烧工况发生变化使蒸汽温度上升,造成给定值和测量值产生偏差,则偏差信号经过控制器的方向判断及数学运算后,产生控制信号使喷水阀门开大,则减温水流量增大。测量值最终回到设定值,系统重新回到平衡状态。 3.2复杂蒸汽温度控制系统 简单控制系统虽然是一种最基本的,使用最广泛的控制系统,但是随着火电厂锅炉机组越来越向大容量、高参数和高效率的方向发展,生产系统日益复杂、系统的耦合性、时变性、非线性等特点显得更加突出,对于这些复杂较难控制的过程,控制质量要求很严的参数,简单控制系统就无能为力了。因此,需要改进控制结构,增加辅助回路或添加其它环节,组成复杂控制系统。目前关于蒸汽温度控制系统主要有串级控制、前馈控制和多变量解耦等控制,其中最普遍的是串级控制系统。 3.3串级控制系统的特点 串级控制系统具有以下特点: (1)串级控制系统具有很强的克服内扰的能力系统的开环放大倍数越大,稳态误差越小,克服干扰的能力也就越强,副调节器的放大倍数整定的越大,这个优点越显著。 (2)串级控制系统可以减小副回路的时间常数,改善对象动态特性,提高系统的工作频率,当主、副对象都是一阶惯性环节,主、副调节器都采用比例作用时,串级控制系统由于改善了对象的特性,从而使整个系统的工作频率比单回路系统的工作频率有所提高,而且当主、副对象特性一定时,副调节器放大倍数越大,则工频率越高。当主调节器采用其它调节规律时,上述特点也是适用的。这一特点说明即使在外扰作用下,由于副回路减小了对象的时间常数,使整个系统的工频得以提高,因此仍能改善整个系统过渡过程的品质。 (3)串级控制系统具有一定的自适应能力,串级控制系统主回路是一个定值系统,其副回路是一个随动系统,它的定值是主调节器的输出,是一个随机变化的量,主调节器按照被控对象的特性和扰动变化的情况,不断地纠正着副调节器的给定值,副调节器使系统时间常数缩短能很快克服扰动,改善动态特性,也就是一种自适应能力。而采用单回路控制统就没有这种随动控制系统的作用。这种自适应能力可以从系统的稳态偏差上出来,串级控制系统的稳态偏差比单回路控制系统的稳态误差要小得多,就在于前者具有一定的自适应力。 3.4采用串级调节系统的条件 3.4.1串级调节系统需满足如下两个条件: (1)控制对象可以分段。如图3-3所示的对象,在物理上可分为两段,两段的传递函数分别为W0l(S),和W02(S),整个对象的传递函数为W(S)=W01(S)"W02(S)。 其中W0l(S)称作对象的导前区,W02(S)称为对象惰性区. 图3-3串级系统控制对象 (2)中间信号可测。在图3-3中,中间信号θ2必须是可以测量的。θl为被调量,一般为系统的给定值,火电厂过热蒸汽温度控制系统符合这两个条件。 3.4.2.串级调节系统的分析 根据在减温水量扰动时,过热蒸汽温度有较大的容积迟延,而减温器出口蒸汽温度却有明显的导前作用,完全可以构成以减温器出口蒸汽温度为副参数, 主蒸汽温度为主参数的串级控制系统,系统结构如图3-4所示。 系统中以减温器的喷水为控制手段,在单回路控制主汽温θ l(即将θ1作为主信号反馈到调节器,由调节器直接去控制阀门开度)的基础上增加一个对减温水流量变化反应快的中间温度信号θ2作为导前信号,增加一个副调节器,如图8所示的串级控制信号系统。副调节器根据θ2信号控制减温水阀,如果有某种扰动,蒸汽温度θ2比θl提早反映,使扰动引起的θ2波动很快消除,从而使过热蒸汽温度基本不受影响。热蒸汽温度基本不受影响。 图3-4主汽温串级控制结构图 根据在减温水量WB扰动时,过热蒸汽温度θl有较大的容积迟延。而减温器出口蒸汽温度θ2比过热蒸汽温度响应快得多,且它的变化又可以预测过热蒸汽温度的变化趋势,有明显的导前作用,故可引入以θ2信号为导前信号。以θl为被控量信号的串级控制系统,系统对应的原理框图如图3-5所示。系统中有主、副两个调节器,主调节器WTl(S)接受过热蒸汽温度信号θl,用于维持过热蒸汽温度,使其等于给定值;副调节器WT2(S)接受主调节器的输出信号和减温器出口温度信号θ2,副调节器的输出控制执行机构Kz的大小,从而控制减温水调节阀门的开度。从两图中可以以看出:串级过热蒸汽温度控制系统由内、外两个闭合的控制回路构成。内回路由对象的导前区[Wθ2(S)],导前蒸汽温度变送器[Y θ2],副调节器[WT2(S)],执行器[Kz]和减温水调节阀(Ku)组成的;外回路(主回路)由对象的惰性区[Wθl(S)],过热蒸汽温度变送器(Y θ1),主调节器[WTl(S)],以及副回路组成。 3.4.3过热蒸汽控制系统的控制策略的设计 图3-5串级过热汽温控制系统原理方框图 3.5 串级控制系统主副回路确定 串级控制系统主副回路和主副调节器选择为充分发挥串级控制系统的上述优点,设计控制系统时,还应当合理选择副回路及主副调节器的规律。主副回路的选择原则。 副回路应该把生产过程的主要干扰包括在内,应力求把变化幅度最大、最剧烈和最频繁的干扰包括在副回路内,充分发挥副回路改善系统动态特性的作用保证主参数的稳定,以尽量减少它们对主参数的影响,提高系统的抗干扰能力;主、副对象的时间常数应适当匹配,串级控制系统与单回路控制系统相比,其工作频率提高了,但这与主、副对象的时间常数选择是有关的。原则是两者相差大一些,效果好一些。主、副对象之间的动态联系十分紧密。如果在干扰作用下,主、副参数任一个先振荡,必将引起另一个也振荡,这样,两个参数互相促进,振荡更加剧烈,这就是所谓的“共振效应",显然应力求避免。主、副回路调节器调节规律的选择原则主参数控制质量要求不十分严格,同时在对副参数的要求也不高的情况下为使两者兼顾而采用串级控制方式时,主、副调节器均可采用比例控制。要求主参数波动范围很小,且不允许有余差(稳态误差),此时副调节器可采用比例控制主调节器采用比例积分或比例积分微分控制。 再者,在串级控制系统中,两个调节器串联工作,但是以主调节器为主导,保证主变量为目的,在整个控制过程两个调节器协调一致,互相配合,若干扰来自副回路,副调节器首先进行粗调,主调节器再进一步进行细调。相对于过于简单的单回路控制系统,串级控制系统的控制质量明显优越。具体体现在: 1.由于副回路的存在没减少了控制对象的时间常数,缩短了控制通道,使控制作用更加明显; 2.在一定程度上提高了整个系统的工作频率,使振荡周期明显缩短,调节时间也有一定程度上的缩短,系统的快速性相对增强了; 3.整个控制系统对二次干扰即包括在副回路范围内的扰动具有很强的克服能力,这是单回路控制系统所不能实现的; 4.对负荷或操作条件的变化有一定的适应能力。 综上所述,串级控制系统更适应锅炉蒸汽温度的控制。 3.6 导前微分控制系统 在温度控制系统中,常用的一种便是导前微分控制系统。这种控制系统的结构特点是:只用了一个调节器,调节器的输入取了两个信号。一个信号是主汽温经变送器直接进入调节器的信号,另一个信号则是减温器后的温度经微分器后送入调节器的信号。在时间和相位上,后一个信号超前于主信号(主汽温信号),因此把这种系统称为导前微分控制系统。又因为它有两个信号直接送入到调节器,所以也称这样的系统为具有导前微分信号的双冲量控制系统。微分作用能反映输出量的变化趋势,因而能提前反映输出量的变化,把这种作用用于控制系统,能改善控制性能。 3.6.1 导前微分控制系统的组成及原理 采用导前微分信号的过热汽温控制系统如图3-6所示。这个系统引入了导前汽温的微分信号作为调节器的补充信号,以改善控制质量。因为和主汽温的变化趋势是一致的,切的变化比快的多,因此它能迅速反映的变化趋势。引入了的微分信号后。将有助于调节器的动作快速性。在动态时,调节器将根据的微分信号和与的给定值之间的偏差而动作;但在静态时,的微分信号消失,过热汽温必然等于给定值。如果不采用导前信号的微分信号,则在静态时,调节器将保持等于给定值,而不能保持等于给定值。 由图3-6所示的系统结构图我们可以画出导前汽温微分信号控制系统的原理方框图,如图3-7所示。它包括两个闭合的控制回路: 1、由控制对象的导前区,导前汽温变送器、微分器、调节器、执行器和减温水调节阀组成的副回路(导前补偿回路); 2、由控制对象的惰性区、主汽温变送器和副回路组成的主回路。 图3-6导前汽温微分信号的双回路汽温控制系统 3.6.2 导前微分控制系统的分析- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电厂 锅炉 蒸汽 温度 控制系统 设计 大学 毕业设计 论文
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文