高中数学试题三角函数单元测试题.doc
《高中数学试题三角函数单元测试题.doc》由会员分享,可在线阅读,更多相关《高中数学试题三角函数单元测试题.doc(8页珍藏版)》请在咨信网上搜索。
三角函数单元测试题 姓名: 班级: 考场: 座位号: 一、选择题(本大题共10小题,每小题5分,共50分) 1.下列函数中,最小正周期为π的偶函数是 ( ) A.y=sin2x B.y=cos C.y=sin2x+cos2x D.y= 2.设函数y=cos(sinx),则 ( ) A.它的定义域是[-1,1] B.它是偶函数 C.它的值域是[-cos1,cos1] D.它不是周期函数 3.把函数y=cosx的图象上的所有点的横坐标缩小到原来的一半,纵坐标扩大到原来的两倍,然后把图象向左平移个单位.则所得图象表示的函数的解析式为 ( ) A.y=2sin2x B.y=-2sin2x C.y=2cos(2x+) D.y=2cos(+) 4.函数y=2sin(3x-)图象的两条相邻对称轴之间的距离是 ( ) A. B. C.π D. 5.若sinα+cosα=m,且-≤m<-1,则α角所在象限是 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 6.函数y=|cotx|·sinx(0<x≤且x≠π)的图象是 ( ) 7.设y=,则下列结论中正确的是 ( ) A.y有最大值也有最小值 B.y有最大值但无最小值 C.y有最小值但无最大值 D.y既无最大值又无最小值 8.函数y=sin(-2x)的单调增区间是 ( ) A.[kπ-,kπ+](k∈Z) B.[kπ+,kπ+](k∈Z) C.[kπ-,kπ+](k∈Z) D.[kπ+,kπ+](k∈Z) 9.已知0≤x≤π,且-<a<0,那么函数f(x)=cos2x-2asinx-1的最小值是 ( ) A.2a+1 B.2a-1 C.-2a-1 D.2a 10.求使函数y=sin(2x+θ)+cos(2x+θ)为奇函数,且在[0,]上是增函数的θ的一个值为 ( ) A. B. C. D. 二、填空题(本大题共6小题,每小题5分,共30分) 11.函数y=的值域是_____________. 12.函数y=的定义域是_____________. 13.如果x,y∈[0,π],且满足|sinx|=2cosy-2,则x=___________,y=___________. 14.已知函数y=2cosx,x∈[0,2π]和y=2,则它们的图象所围成的一个封闭的平面图形的面积是_____________ 15.函数y=sinx+cosx+sin2x的值域是_____________. 16.关于函数f(x)=4sin(2x+)(x∈R)有下列命题: ①由f(x1)=f(x2)=0可得x1-x2必是π的整数倍; ②y=f(x)的表达式可改为y=4cos(2x-); ③y=f(x)的图象关于点(-,0)对称; ④y=f(x)的图象关于直线x=-对称. 其中正确的命题的序号是_____________. 三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)如图为函数y=Asin(ωx+φ)(A>0,ω>0)的图象的一部分,试求该函数的一个解析式. 18.(本小题满分14分)已知函数y=(sinx+cosx)2+2cos2x.(x∈R) (1)当y取得最大值时,求自变量x的取值集合. (2)该函数图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到? 19.(本小题满分14分)已知函数f(x)=(sinx-cosx) (1)求它的定义域和值域;(2)求它的单调减区间; (3)判断它的奇偶性;(4)判断它的周期性,如果是周期函数,求出它的一个周期. 20.(本小题满分15分)某村欲修建一横断面为等腰梯形的水渠(如图),为降低成本,必须尽量减少水与水渠壁的接触面.若水渠横断面面积设计为定值 m,渠深3米,则水渠侧壁的倾斜角α应为多少时,方能使修建的成本最低? 21. (本小题满分15分)已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R上的偶函数,其图象关于点M(,0)对称,且在区间[0,]上是单调函数,求φ和ω的值. 三角函数单元测试题答案 一、选择题(本大题共10小题,每小题5分,共50分) 1.D 2.B 3.B 4.A 5.C 6.C 7.C 8.D 9.C 10.C 二、填空题(本大题共6小题,每小题5分,共30分) 11.(-∞,]∪[1,+∞) 12.{x|-+2kπ<x<2kπ或2kπ<x<+2kπ(k∈Z)} 13.x=0或π,y=0 14.4π 15.{y|-≤y≤1+} 16.②③ 三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)如图为函数y=Asin(ωx+φ)(A>0,ω>0)的图象的一部分,试求该函数的一个解析式. 【解】 由图可得:A=,T=2|MN|=π. 从而ω==2,故y=sin(2x+φ) 将M(,0)代入得sin(+φ)=0 取φ=-得y=sin(2x-) 【评注】 本题若将N(,0)代入y=sin(2x+φ) 则可得:sin(+φ)=0.若取φ=-,则y=sin(2x-)=-sin(2x-),它与y=sin(2x-)的图象关于x轴对称,故求解错误!因此,将点的坐标代入函数y=sin(2x+φ)后,如何确定φ,要看该点在曲线上的位置.如:M在上升的曲线上,就相当于“五点法”作图中的第一个点,故+φ=0;而N点在下降的曲线上,因此相当于“五点法”作图中的第三个点,故+φ=π,由上可得φ的值均为-. 18.(本小题满分14分)已知函数y=(sinx+cosx)2+2cos2x.(x∈R) (1)当y取得最大值时,求自变量x的取值集合. (2)该函数图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到? 【解】 y=1+sin2x+2cos2x=sin2x+cos2x+2=sin(2x+)+2. (1)要使y取得最大值,则sin(2x+)=1. 即:2x+=2kπ+x=kπ+ (k∈Z) ∴所求自变量的取值集合是{x|x=kπ+,k∈Z}. (2)变换的步骤是: ①把函数y=sinx的图象向左平移个单位,得到函数y=sin(x+)的图象; ②将所得的图象上各点的横坐标缩短到原来的倍(纵坐标不变),得函数y=sin(2x+)的图象; ③再将所得的图象上各点的纵坐标伸长到原来的倍(横坐标不变),得函数 y=sin(2x+)的图象; ④最后将所得的图象向上平移2个单位,就得到 y=sin(2x+)+2的图象. 【说明】 以上变换步骤不唯一! 19.(本小题满分14分)已知函数f(x)=(sinx-cosx) (1)求它的定义域和值域;(2)求它的单调减区间; (3)判断它的奇偶性;(4)判断它的周期性,如果是周期函数,求出它的一个周期. 【分析】 研究复合函数的性质(定义域、值域、单调性、奇偶性、周期性)应同时考虑内层函数与外层函数各自的特性以及它们的相互制约关系. 【解】 (1)由题意得sinx-cosx>0,即sin(x-)>0 从而得2kπ<x-<2kπ+π,所以函数的定义域为(2kπ+,2kπ+)(k∈Z) ∵0<sin(x-)≤1,∴0<sinx-cosx≤ 即有(sinx-cosx)≥=-.故函数的值域是[-,+∞). (2)∵sinx-cosx=sin(x-)在f(x)的定义域上的单调递增区间为(2kπ+,2kπ+)(k∈Z),函数f(x)的递减区间为(2kπ+,2kπ+)(k∈Z). (3)∵f(x)的定义域在数轴上对应的点不关于原点对称, ∴函数f(x)是非奇非偶函数. (4)f(x+2π)=[sin(x+2π)-cos(x+2π)]=(sinx-cosx)=f(x). ∴函数f(x)是周期函数,2π是它的一个周期. 20.(本小题满分15分)某村欲修建一横断面为等腰梯形的水渠(如图),为降低成本,必须尽量减少水与水渠壁的接触面.若水渠横断面面积设计为定值 m,渠深3米,则水渠侧壁的倾斜角α应为多少时,方能使修建的成本最低? 【分析】 本题中水与水渠壁的接触面最小,即是修建的 成本最低,而水与水渠壁的接触面最小,实际上是使水渠横断 面的周长最小. 【解】 设水渠横断面的周长为y,则: (y-2×)×3+2×·=m 即:y=+3· (0°<α<90°). 欲减少水与水渠壁的接触面,只要使水渠横断面周长y最小,即要使t= (0°<α<90°)最小, ∵tsinα+cosα=2. ∴sin(α+φ)=,(其中φ由tanφ=,φ∈(0°,90°)) 由≤1得:t2≥3t≥ 当且仅当t=,即tanφ=,即φ=30°时,不等式取等号,此时sin(α+30°)=1α=60°. 【答】 水渠侧壁的倾斜角α=60°时,修建成本最低. 21. (本小题满分15分)已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R上的偶函数,其图象关于点M(,0)对称,且在区间[0,]上是单调函数,求φ和ω的值. 【解】 由f(x)是偶函数,得f(x)=f(-x) 即sin(ωx+φ)=sin(-ωx+φ) ∴-cosφsinωx=cosφsinωx对任意x都成立. 且ω>0,∴cosφ=0,依题设0≤φ≤π,∴φ= 由f(x)的图象关于点M(,0)对称,得, 取x=0,得f()=-f(),∴f()=0 ∴f()=sin(+)=cos=0,又ω>0 ∴=+kπ,k=0,1,2,…,ω= (2k+1),k=0,1,2,… 当k=0时,ω=,f(x)=sin(x+)在区间[0,]上是减函数; 当k=1时,ω=2,f(x)=sin(2x+)在区间[0,]上是减函数; 当k≥2时,ω≥,f(x)=sin(ωx+)在区间[0,]上不是单调函数; 所以,ω=或ω=2.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 试题 三角函数 单元测试
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文