闭区间上二次函数的最值问题(教案).doc
《闭区间上二次函数的最值问题(教案).doc》由会员分享,可在线阅读,更多相关《闭区间上二次函数的最值问题(教案).doc(6页珍藏版)》请在咨信网上搜索。
1、。闭区间上二次函数的最值问题一、教材分析1、教学背景二次函数是重要的初等函数之一,很多问题都要化归为二次函数来处理。二次函数又与一元二次方程、一元二次不等式有着密切的联系,因此必须熟练掌握它的性质,并能灵活地运用它的性质去解决实际问题。二次函数在高考中占有重要的地位,而二次函数在闭区间上的最值在各个方面都有重要的应用,主要考察我们分类讨论和数形结合思想。这节课我们主要学会应用二次函数的图像和性质求二次函数在闭区间上的最值。影响二次函数在闭区间上的最值主要有三个因素:抛物线的开口方向、对称轴和区间的位置。对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。2、学情分析从心理特征来说
2、,高三学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,作为普通高中美术班的学生,学生层次参次不齐,个体差异比较明显。大部分学生接受能力较慢、注意力容易分散,学习数学的自信心和兴趣不够,所以在教学一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性,提高学生自信心。从认知状况来说,学生在此之前已经复习了函数定义域、值域以及单调性,对二次函数的开口、对称轴已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于闭区间上“动对称轴和动区间”的二次函数最值,由于其抽
3、象程度较高,学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。3、教学重难点重点:轴定区间定的闭区间上二次函数最值问题,轴变区间定的闭区间上二次函数最值,轴定区间变的闭区间上二次函数最值问题难点:轴变区间定的闭区间上二次函数最值,轴定区间变的闭区间上二次函数最值问题二、教学目标分析1. 会结合图像与函数的知识进行分类讨论,求解一元二次函数的最值问题,提高学生的综合能力,培养学生良好的思维习惯,加深对数形结合、分类讨论等数学思想的认识。2. 了解图像与函数的关系,进一步感受数形结合的基本思想。3. 经历从“轴动区间定”到“轴定区间动”的类比推理,培养学生类比推理能力;使学生养成
4、积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。三、教学方法:类比推理法,讲授发现法四、教学过程分析1. 课前回顾回顾:一元二次函数的对称轴为_,顶点为_。时,在_上是增函数;在_上是减函数.2. 精析例题1) 轴定区间定:二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。例1. 函数在下列区间上最值: (1) (2) (3) (4)【学情预设】例1是最基本的题型,学生可以自己完成.(1)是学生非常熟悉的二次函数在的最值问题,在初中就已经解决过了;(2)、(3)、(4)依次是对称轴在闭区间右侧、内部、左侧的情形,通过观察图像,运用单调性的
5、相关知识也可以解决.这里难度较大的是如何让学生讨论例出此类题型的最值的规律,故要借助图像引导学生总结出解法及规律.2) 轴定区间变:二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。例2. (1)如果函数定义在区间上,求的最小值。(2)如果函数定义在区间上,求的最大值。(3)如果函数定义在区间上,求的最值。解:分别设在上的最大、最小值分别为,则由对称轴为,分4种情况讨论:(1),即时,(2)时,(3),即时,(4),即时,综上,【学情预设】例2是难度较大的题型涉及到分类讨论以及字母的推理运算,因而通过三小问来分解难度。教师要借助几何画板引导学生观察
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 区间 二次 函数 问题 教案
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。