人教版九年级数学上册教案:23.1-图形的旋转(2)-(2).doc
《人教版九年级数学上册教案:23.1-图形的旋转(2)-(2).doc》由会员分享,可在线阅读,更多相关《人教版九年级数学上册教案:23.1-图形的旋转(2)-(2).doc(6页珍藏版)》请在咨信网上搜索。
23.1 图形的旋转(2) 第二课时 教学内容 1.对应点到旋转中心的距离相等. 2.对应点与旋转中心所连线段的夹角等于旋转角. 3.旋转前后的图形全等及其它们的运用. 教学目标 理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用. 先复习旋转及其旋转中心、旋转角和旋转的对应点概念,接着用操作几何、实验探究图形的旋转的基本性质. 重难点、关键 1.重点:图形的旋转的基本性质及其应用. 2.难点与关键:运用操作实验几何得出图形的旋转的三条基本性质. 教学过程 一、复习引入 (学生活动)老师口问,学生口答. 1.什么叫旋转?什么叫旋转中心?什么叫旋转角? 2.什么叫旋转的对应点? 3.请独立完成下面的题目. 如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形? (老师点评)分析:能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°、120°、180°、240°、300°形成的. 二、探索新知 上面的解题过程中,能否得出什么结论,请回答下面的问题: 1.A、B、C、D、E、F到O点的距离是否相等? 2.对应点与旋转中心所连线段的夹角∠BOC、∠COD、∠DOE、∠EOF、∠FOA是否相等? 3.旋转前、后的图形这里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OFA全等吗? 老师点评:(1)距离相等,(2)夹角相等,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验. 请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板. (分组讨论)根据图回答下面问题(一组推荐一人上台说明) 1.线段OA与OA′,OB与OB′,OC与OC′有什么关系? 2.∠AOA′,∠BOB′,∠COC′有什么关系? 3.△ABC与△A′B′C′形状和大小有什么关系? 老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心相等. 2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角. 3.△ABC和△A′B′C′形状相同和大小相等,即全等. 综合以上的实验操作和刚才作的(3),得出 (1)对应点到旋转中心的距离相等; (2)对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前、后的图形全等. 例1.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B对应点的位置,以及旋转后的三角形. 分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示. 解:(1)连结CD (2)以CB为一边作∠BCE,使得∠BCE=∠ACD (3)在射线CE上截取CB′=CB 则B′即为所求的B的对应点. (4)连结DB′ 则△DB′C就是△ABC绕C点旋转后的图形. 例2.如图,四边形ABCD是边长为1的正方形,且DE=,△ABF是△ADE的旋转图形. (1)旋转中心是哪一点? (2)旋转了多少度? (3)AF的长度是多少? (4)如果连结EF,那么△AEF是怎样的三角形? 分析:由△ABF是△ADE的旋转图形,可直接得出旋转中心和旋转角,要求AF的长度,根据旋转前后的对应线段相等,只要求AE的长度,由勾股定理很容易得到.△ABF与△ADE是完全重合的,所以它是直角三角形. 解:(1)旋转中心是A点. (2)∵△ABF是由△ADE旋转而成的 ∴B是D的对应点 ∴∠DAB=90°就是旋转角 (3)∵AD=1,DE= ∴AE== ∵对应点到旋转中心的距离相等且F是E的对应点 ∴AF= (4)∵∠EAF=90°(与旋转角相等)且AF=AE ∴△EAF是等腰直角三角形. 三、巩固练习 教材P64 练习1、2. 四、应用拓展 例3.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系. 分析:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明. 解:∵四边形ABCD、四边形AKLM是正方形 ∴AB=AD,AK=AM,且∠BAD=∠KAM为旋转角且为90° ∴△ADM是以A为旋转中心,∠BAD为旋转角由△ABK旋转而成的 ∴BK=DM 五、归纳小结(学生总结,老师点评) 本节课应掌握: 1.对应点到旋转中心的距离相等; 2.对应点与旋转中心所连线段的夹角等于旋转角; 3.旋转前、后的图形全等及其它们的应用. 六、布置作业 1.教材 复习巩固4 综合运用5、6. 2.作业设计. 作业设计 一、选择题 1.△ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,则旋转角等于( ) A.50° B.210° C.50°或210° D.130° 2.在图形旋转中,下列说法错误的是( ) A.在图形上的每一点到旋转中心的距离相等 B.图形上每一点移动的角度相同 C.图形上可能存在不动的点 D.图形上任意两点的连线与其对应两点的连线长度相等 3.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是( ) 二、填空题 1.在作旋转图形中,各对应点与旋转中心的距离________. 2.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是________,它们之间的关系是______,其中BD=_________. 3.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+DF与EF的关系是________. 三、综合提高题 1.如图,正方形ABCD的中心为O,M为边上任意一点,过OM随意连一条曲线,将所画的曲线绕O点按同一方向连续旋转3次,每次旋转角度都是90°,这四个部分之间有何关系? 2.如图,以△ABC的三顶点为圆心,半径为1,作两两不相交的扇形,则图中三个扇形面积之和是多少? 3.如图,已知正方形ABCD的对角线交于O点,若点E在AC的延长线上,AG⊥EB,交EB的延长线于点G,AG的延长线交DB的延长线于点F,则△OAF与△OBE重合吗?如果重合给予证明,如果不重合请说明理由? 答案: 一、1.C 2.A 3.D 二、1.相等 2.△ACE 图形全等 CE 3.相等 三、1.这四个部分是全等图形 2.∵∠A+∠B+∠C=180°, ∴绕AB、AC的中点旋转180°,可以得到一个半圆, ∴面积之和=. 3.重合:证明:∵EG⊥AF ∴∠2+∠3=90° ∵∠3+∠1+90°=180° ∵∠1+∠3=90° ∴∠1=∠2 同理∠E=∠F,∵四边形ABCD是正方形,∴AB=BC ∴△ABF≌△BCE,∴BF=CE,∴OE=OF,∵OA=OB ∴△OBE绕O点旋转90°便可和△OAF重合.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 九年级 数学 上册 教案 23.1 图形 旋转
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文