高中数学(4.3.2空间两点间的距离公式)示范教案新人教A版必修2.doc
《高中数学(4.3.2空间两点间的距离公式)示范教案新人教A版必修2.doc》由会员分享,可在线阅读,更多相关《高中数学(4.3.2空间两点间的距离公式)示范教案新人教A版必修2.doc(5页珍藏版)》请在咨信网上搜索。
4.3.2 空间两点间的距离公式 整体设计 教学分析 平面直角坐标系中,两点之间的距离公式是学生已学的知识,不难把平面上的知识推广到空间,遵循从易到难、从特殊到一般的认识过程,利用类比的思想方法,借助勾股定理得到空间任意一点到原点的距离;从平面直角坐标系中的方程x2+y2=r2表示以原点为圆心,r为半径的圆,推广到空间直角坐标系中的方程x2+y2+z2=r2表示以原点为球心,r为半径的球面.学生是不难接受的,这不仅不增加学生负担,还会提高学生学习的兴趣. 三维目标 1.掌握空间两点间的距离公式,会用空间两点间的距离公式解决问题. 2.通过探究空间两点间的距离公式,灵活运用公式,初步意识到将空间问题转化为平面问题是解决问题的基本思想方法,培养类比、迁移和化归的能力. 3.通过棱与坐标轴平行的特殊长方体的顶点的坐标,类比平面中两点之间的距离的求法,探索并得出空间两点间的距离公式,充分体会数形结合的思想,培养积极参与、大胆探索的精神. 重点难点 教学重点:空间两点间的距离公式. 教学难点:一般情况下,空间两点间的距离公式的推导. 课时安排 1课时 教学过程 导入新课 思路1.距离是几何中的基本度量,几何问题和一些实际问题经常涉及距离,如飞机和轮船的航线的设计,它虽不是直线距离,但也涉及两点之间的距离,一些建筑设计也要计算空间两点之间的距离,那么如何计算空间两点之间的距离呢?这就是我们本堂课的主要内容. 思路2.我们知道,数轴上两点间的距离是两点的坐标之差的绝对值,即d=|x1-x2|;平面直角坐标系中,两点之间的距离是d=.同学们想,在空间直角坐标系中,两点之间的距离应怎样计算呢?又有什么样的公式呢?因此我们学习空间两点间的距离公式. 推进新课 新知探究 提出问题 ①平面直角坐标系中,两点之间的距离公式是什么?它是如何推导的? ②设A(x,y,z)是空间任意一点,它到原点的距离是多少?应怎样计算? ③给你一块砖,你如何量出它的对角线长,说明你的依据. ④同学们想,在空间直角坐标系中,你猜想空间两点之间的距离应怎样计算? ⑤平面直角坐标系中的方程x2+y2=r2表示什么图形?在空间中方程x2+y2+z2=r2表示什么图形? ⑥试根据②③推导两点之间的距离公式. 活动:学生回忆,教师引导,教师提问,学生回答,学生之间可以相互交流讨论,学生有困难教师点拨.教师引导学生考虑解决问题的思路,要全面考虑,大胆猜想,发散思维.①学生回忆学过的数学知识,回想当时的推导过程;②解决这一问题,可以采取转化的方法,转化成我们学习的立体几何知识来解;③首先考虑问题的实际意义,直接度量,显然是不可以的,我们可以转化为立体几何的方法,也就是求长方体的对角线长.④回顾平面直角坐标系中,两点之间的距离公式,可类比猜想相应的公式;⑤学生回忆刚刚学过的知识,大胆类比和猜想;⑥利用③的道理,结合空间直角坐标系和立体几何知识,进行推导. 讨论结果:①平面直角坐标系中,两点之间的距离公式是d=,它是利用直角三角形和勾股定理来推导的. 图1 ②如图1,设A(x,y,z)是空间任意一点,过A作AB⊥xOy平面,垂足为B,过B分别作BD⊥x轴,BE⊥y轴,垂足分别为D,E.根据坐标的含义知,AB=z,BD=x,BE=OD=y,由于三角形ABO、BOD是直角三角形,所以BO2=BD2+OD2,AO2=AB2+BO2=AB2+BD2+OD2=z2+x2+y2,因此A到原点的距离是d=. ③利用求长方体的对角线长的方法,分别量出这块砖的三条棱长,然后根据对角线长的平方等于三条边长的平方的和来算. ④由于平面直角坐标系中,两点之间的距离公式是d=,是同名坐标的差的平方的和再开方,所以我们猜想,空间两点之间的距离公式是d=,即在原来的基础上,加上纵坐标差的平方. ⑤平面直角坐标系中的方程x2+y2=r2表示以原点为圆心,r为半径的圆;在空间x2+y2+z2=r2表示以原点为球心,r为半径的球面;后者正是前者的推广. 图2 ⑥如图2,设P1(x1,y1,z1),P2(x2,y2,z2)是空间中任意两点,我们来计算这两点之间的距离. 我们分别过P1P2作xOy平面的垂线,垂足是M,N,则M(x1,y1,0),N(x2,y2,0),于是可以求出|MN|=. 再过点P1作P1H⊥P2N,垂足为H,则|MP1|=|z1|,|NP2|=|z2|,所以|HP2|=|z2-z1|. 在Rt△P1HP2中,|P1H|=|MN|=,根据勾股定理,得|P1P2|==.因此空间中点P1(x1,y1,z1),P2(x2,y2,z2)之间的距离为|P1P2|=. 于是空间两点之间的距离公式是d=.它是同名坐标的差的平方的和的算术平方根. 应用示例 例1 已知A(3,3,1),B(1,0,5),求: (1)线段AB的中点坐标和长度; (2)到A,B两点的距离相等的点P(x,y,z)的坐标满足的条件. 活动:学生审题,教师引导学生分析解题思路,已知的两点A、B都是空间直角坐标系中的点,我们直接利用空间两点间的距离公式求解即可.知识本身不难,但是我们计算的时候必须认真,决不能因为粗心导致结果错误. 解:(1)设M(x,y,z)是线段AB的中点,则根据中点坐标公式得 x==2,y==,z==3.所以AB的中点坐标为(2,,3). 根据两点间距离公式,得 d(A,B)=, 所以AB的长度为. (2)因为点P(x,y,z)到A,B的距离相等, 所以有下面等式: . 化简得4x+6y-8z+7=0, 因此,到A,B两点的距离相等的点P(x,y,z)的坐标满足的条件是4x+6y-8z+7=0. 点评:通过本题我们可以得出以下两点: ①空间两点连成的线段中点坐标公式和两点间的距离公式是平面上中点坐标公式和两点间的距离公式的推广,而平面上中点坐标公式和两点间的距离公式又可看成空间中点坐标公式和两点间的距离公式的特例. ②到A,B两点的距离相等的点P(x,y,z)构成的集合就是线段AB的中垂面. 变式训练 在z轴上求一点M,使点M到点A(1,0,2),B(1,-3,1)的距离相等. 解:设M(0,0,z),由题意得|MA|=|MB|, , 整理并化简,得z=-3,所以M(0,0,-3). 例2 证明以A(4,3,1),B(7,1,2),C(5,2,3)为顶点的△ABC是一等腰三角形. 活动:学生审题,教师引导学生分析解题思路,证明△ABC是一等腰三角形,只需求出|AB|,|BC|,|CA|的长,根据边长来确定. 证明:由两点间距离公式得: |AB|= |BC|=, |CA|=. 由于|BC|=|CA|=,所以△ABC是一等腰三角形. 点评:判断三角形的形状一般是根据边长来实现的,因此解决问题的关键是通过两点间的距离公式求出边长. 变式训练 三角形△ABC的三个顶点坐标为A(1,-2,-3),B(-1,-1,-1),C(0,0,-5),试证明△ABC是一直角三角形. 活动:学生先思考或交流,然后解答,教师及时提示引导,要判定△ABC是一直角三角形,只需求出|AB|,|BC|,|CA|的长,利用勾股定理的逆定理来判定. 解:因为三个顶点坐标为A(1,-2,-3),B(-1,-1,-1),C(0,0,-5),所以 |AB|==3, |BC|=, |CA|==3. 又因为|AB|2+|CA|2=|BC|2,所以△ABC是直角三角形. 例3 已知A(x,5-x,2x-1),B(1,x+2,2-x),则|AB|的最小值为( ) A.0 B. C. D. 活动:学生阅读题目,思考解决问题的方法,教师提示,要求|AB|的最小值,首先我们需要根据空间两点间的距离公式表示出|AB|,然后再根据一元二次方程求最值的方法得出|AB|的最小值. 解析:|AB|= = =. 当x=时,|AB|的最小值为. 故正确选项为B. 答案:B 点评:利用空间两点间的距离公式转化为关于x的二次函数求最值是常用的方法. 知能训练 课本本节练习1、2、3、4. 拓展提升 已知三棱锥P—ABC(如图4),PA⊥平面ABC,在某个空间直角坐标系中,B(3m,m,0),C(0,2m,0),P(0,0,2n),画出这个空间直角坐标系并求出直线AB与x轴所成的较小的角. 图3 解:根据已知条件,画空间直角坐标系如图3: 以射线AC为y轴正方向,射线AP为z轴正方向,A为坐标原点建立空间直角坐标系O—xyz,过点B作BE⊥Ox,垂足为E,∵B(m,m,0),∴E(m,0,0). 在Rt△AEB中,∠AEB=90°,|AE|=m,|EB|=m, ∴tan∠BAE==.∴∠BAE=30°, 即直线AB与x轴所成的较小的角为30°. 课堂小结 1.空间两点间的距离公式的推导与理解. 2.空间两点间的距离公式的应用. 3.建立适当的空间直角坐标系,综合利用两点间的距离公式. 作业 习题4.3 A组3,B组1、2、3. 设计感想 本节课从平面直角坐标系中两点之间的距离公式入手,创设问题情景,不难把平面上的知识推广到空间,遵循从易到难、从特殊到一般的认识过程,利用类比的思想方法,借助勾股定理得到空间任意一点到原点的距离.为了培养学生的理性思维,在例题中,设计了由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,本节课的设计通过适当的创设情境,调动学生的学习兴趣.本节课以问题为纽带,以探究活动为载体,使学生在问题的指引下、教师的指导下把探究活动层层展开、步步深入,充分体现以教师为主导,以学生为主体的指导思想.把学生学习知识的过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,提高了能力、培养了兴趣、增强了信心. 5- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 4.3 空间 两点 距离 公式 示范 教案 新人 必修
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文