高中数学双曲线经典例题.doc
《高中数学双曲线经典例题.doc》由会员分享,可在线阅读,更多相关《高中数学双曲线经典例题.doc(10页珍藏版)》请在咨信网上搜索。
高中数学双曲线经典例题 一、双曲线定义及标准方程 1.已知两圆C1:(x+4)2+y2=2,C2:(x﹣4)2+y2=2,动圆M与两圆C1,C2都相切,则动圆圆心M的轨迹方程是( ) A.x=0 B. C. D. 2、求适合下列条件的双曲线的标准方程: (1)焦点在 x轴上,虚轴长为12,离心率为 ; (2)顶点间的距离为6,渐近线方程为. 3、与双曲线有相同的焦点,且过点的双曲线的标准方程是 4、求焦点在坐标轴上,且经过点A(,﹣2)和B(﹣2,)两点的双曲线的标准方程. 5、已知P是双曲线=1上一点,F1,F2是双曲线的两个焦点,若|PF1|=17,则|PF2|的值为 . 二、离心率 1、已知点F1、F2分别是双曲线的两个焦点,P为该双曲线上一点,若△PF1F2为等腰直角三角形,则该双曲线的离心率为 . 2、设F1,F2是双曲线C:(a>0,b>0)的两个焦点.若在C上存在一点P.使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为 . 3、双曲线的焦距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(﹣1,0)到直线l的距离之和.则双曲线的离心率e的取值范围是( ) A. B. C. D. 3、焦点三角形 1、设P是双曲线x2﹣=1的右支上的动点,F为双曲线的右焦点, 已知A(3,1),则|PA|+|PF|的最小值为 . 2、.已知F1,F2分别是双曲线3x2﹣5y2=75的左右焦点,P是双曲线上的一点,且∠F1PF2=120°,求△F1PF2的面积. 3、已知双曲线焦点在y轴上,F1,F2为其焦点,焦距为10,焦距是实轴长的2倍.求: (1)双曲线的渐近线方程; (2)若P为双曲线上一点,且满足∠F1PF2=60°,求△PF1F2的面积. 4、直线与双曲线的位置关系 已知过点P(1,1)的直线L与双曲线只有一个公共点,则直线L的斜率k= ____ 5、综合题型 如图,已知椭圆(a>b>0)的离心率为,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D. (1)求椭圆和双曲线的标准方程; (2)设直线PF1、PF2的斜率分别为k1、k2,证明:k1·k2=1; (3)是否存在常数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,请说明理由. 高中数学双曲线经典例题 参考答案与试题解析 一.选择题(共2小题) 1.(2015秋•洛阳校级期末)已知两圆C1:(x+4)2+y2=2,C2:(x﹣4)2+y2=2,动圆M与两圆C1,C2都相切,则动圆圆心M的轨迹方程是( ) A.x=0 B. C. D. 【解答】解:由题意,①若两定圆与动圆相外切或都内切,即两圆C1:(x+4)2+y2=2,C2:(x﹣4)2+y2=2,动圆M与两圆C1,C2都相切, ∴|MC1|=|MC2|,即M点在线段C1,C2的垂直平分线上 又C1,C2的坐标分别为(﹣4,0)与(4,0) ∴其垂直平分线为y轴, ∴动圆圆心M的轨迹方程是x=0 ②若一内切一外切,不妨令与圆C1:(x+4)2+y2=2内切,与圆C2:(x﹣4)2+y2=2外切,则有M到(4,0)的距离减到(﹣4,0)的距离的差是2,由双曲线的定义知,点M的轨迹是以(﹣4,0)与(4,0)为焦点,以为实半轴长的双曲线,故可得b2=c2﹣a2=14,故此双曲线的方程为 综①②知,动圆M的轨迹方程为 应选D. 2.(2014•齐齐哈尔三模)双曲线的焦距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(﹣1,0)到直线l的距离之和.则双曲线的离心率e的取值范围是( ) A. B. C. D. 【解答】解:直线l的方程为+=1,即bx+ay﹣ab=0. 由点到直线的距离公式,且a>1,得到点(1,0)到直线l的距离 , 同理得到点(﹣1,0)到直线l的距离.,. 由,得.. 于是得 5≥2e2,即4e4﹣25e2+25≤0. 解不等式,得 ≤e2≤5. 由于e>1>0, 所以e的取值范围是 . 故选D. 二.填空题(共5小题) 3.(2013秋•城区校级期末)已知P是双曲线=1上一点,F1,F2是双曲线的两个焦点,若|PF1|=17,则|PF2|的值为 33 . 【解答】解:由双曲线方程知,a=8,b=6,则c==10. ∵P是双曲线上一点, ∴||PF1|﹣|PF2||=2a=16, 又|PF1|=17, ∴|PF2|=1或|PF2|=33. 又|PF2|≥c﹣a=2, ∴|PF2|=33. 故答案为33 4.(2008秋•海淀区期末)已知点F1、F2分别是双曲线的两个焦点,P为该双曲线上一点,若△PF1F2为等腰直角三角形,则该双曲线的离心率为 . 【解答】解:由题意,角F1或角F2为直角,不妨令角F2为直角,双曲线方程﹣=1 此时P(c,y),代入双曲线方程﹣=1 解得y= 又三角形PF1F2为等腰三角形得PF2=F1F2, 故得=2c,即2ac=c2﹣a2, 即e2﹣2e﹣1=0,解得e=1 故双曲线的离心率是 故答案为. 5.(2014秋•象山县校级月考)设P是双曲线x2﹣=1的右支上的动点,F为双曲线的右焦点,已知A(3,1),则|PA|+|PF|的最小值为 ﹣2 . 【解答】解:设双曲线左焦点为F2, 由双曲线的定义可得|PF2|﹣|PF|=2a,即|PF|=|PF2|﹣2a, 则|PA|+|PF|=|PF2|+|PA|﹣2a≥|F2A|﹣2a, 当P、F2、A三点共线时,|PF2|+|PA|有最小值, 此时F2(﹣2,0)、A(3,1), 则|PF2|+|PA|=|AF2|=, 而对于这个双曲线,2a=2, 所以最小值为﹣2. 故答案为:﹣2. 6.(2011秋•张家港市校级期末)与双曲线有相同的焦点,且过点的双曲线的标准方程是 . 【解答】解:设所求双曲线的方程为 , ∵已知双曲线的焦点为(±,0) ∴所求双曲线中的c2=5① ∵双曲线过点 ∴② 且c2=a2+b2③ 联立①②③解得a2=4,b2=1, ∴双曲线的方程为. 故答案为:. 7.(2013•湖南)设F1,F2是双曲线C:(a>0,b>0)的两个焦点.若在C上存在一点P.使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为 . 【解答】解:依题意可知∠F1PF2=90°|F1F2|=2c, ∴|PF1|=|F1F2|=c,|PF2|=|F1F2|=c, 由双曲线定义可知|PF1|﹣|PF2|=2a=(﹣1)c ∴e==. 故答案为:. 三.解答题(共4小题) 8.已知F1,F2分别是双曲线3x2﹣5y2=75的左右焦点,P是双曲线上的一点,且∠F1PF2=120°,求△F1PF2的面积. 【解答】解:由题意,双曲线3x2﹣5y2=75,可化为=1 由余弦定理可得160=PF12+PF22﹣2PF1•PF2cos120°=(PF1﹣PF2)2+3PF1•PF2=100+3PF1•PF2, ∴PF1•PF2=20. S△F1PF2=PF1•PF2sin120°=×20×=5. 故答案为:A. 9.(2014春•湄潭县校级期中)已知双曲线焦点在y轴上,F1,F2为其焦点,焦距为10,焦距是实轴长的2倍.求: (1)双曲线的渐近线方程; (2)若P为双曲线上一点,且满足∠F1PF2=60°,求△PF1F2的面积. 【解答】解:(1)设双曲线方程为(a>0,b>0),则 ∵焦距是实轴长的2倍, ∴c=2a, ∴b==a, ∴双曲线的渐近线方程为y=±x; (2)由余弦定理可得4c2=PF12+PF22﹣2PF1•PF2cos60°=(PF1﹣PF2)2+PF1•PF2=4a2+PF1•PF2, ∵焦距为10, ∴2c=10,2a=5 ∴PF1•PF2=75. ∴S△F1PF2=PF1•PF2sin60°=•75•=. 10.(2008秋•岳阳校级期末)求焦点在坐标轴上,且经过点A(,﹣2)和B(﹣2,)两点的双曲线的标准方程. 【解答】解:设所求双曲线方程为:mx2﹣ny2=1,(mn>0), 因为点A(,﹣2)和B(﹣2,)在双曲线上, 所以可得:, 解得, 故所求双曲线方程为. 11.(2009秋•天心区校级期末)求适合下列条件的双曲线的标准方程: (1)焦点在 x轴上,虚轴长为12,离心率为 ; (2)顶点间的距离为6,渐近线方程为. 【解答】解:(1)焦点在x轴上,设所求双曲线的方程为=1. 由题意,得解得a=8,c=10. ∴b2=c2﹣a2=100﹣64=36. 所以焦点在x轴上的双曲线的方程为. (2)当焦点在x轴上时,设所求双曲线的方程为=1 由题意,得解得a=3,b=. 所以焦点在x轴上的双曲线的方程为. 同理可求当焦点在y轴上双曲线的方程为. 第10页(共10页)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 双曲线 经典 例题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文