2018年高考数学总复习--统计与统计案例.doc
《2018年高考数学总复习--统计与统计案例.doc》由会员分享,可在线阅读,更多相关《2018年高考数学总复习--统计与统计案例.doc(13页珍藏版)》请在咨信网上搜索。
1、第三节 统计与统计案例考纲解读1. 理解随机抽样的必要性和重要性。2. 会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法。3. 了解分布的意义和作用,会列频率分布表,会画出频率分布直方图、频率折线图、茎叶图,理解它们各自的特点。4. 理解样本数据标准差的意义和作用,会计算数据标准差。5. 能从样本的频率分布估计总体分布,会用样本的基本数字牲估计总体的基本数字特征,理解用样本估计总体的思想。6. 会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题。7. 会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系。8. 了解最小二乘法的思想,能根据给出的线性回
2、归方程系数公式建立线性回归方程。9. 了解常见的统计方法,并能应用这些方法解决一些实际问题。(1)独立性检验了解独立性检验(只要求22列联表)的基本思想、方法及其简单应用。(2)回归分析了解回归分析的基本思想、方法及其简单应用。命题趋势探究1. 本节内容是高考必考内容,以选择题、填空题为主。2. 命题内容为:(1)三种抽样(以分层抽样为主);(2)频率分布表和频率分布直方图的制作、识图及运用。(1)(2)有结合趋势,考题难度中下。3. 统计案例为新课标教材新增内容,考查考生解决实际问题的能力。知识点精讲一、抽样方法三种抽样方式的对比,如表13-7所示。类型共同点各自特点相互关系使用范围简单随机
3、抽样抽样过程都是不放回抽样,每个个体被抽到的机会均等,总体容量N,样本容量n,每个个体被抽到的概率从总体中随机逐个抽取总体容量较小系统抽样总体均分几段,每段T个,第一段取a1,第二段取a1+T,第三段取a1+2T,第一段简单随机抽样总体中的个体个数较多分层抽样将总体分成n层,每层按比例抽取每层按简单随机抽样或系统抽样总体由差异明显的几部分组成二、样本分析(1)样本平均值:。(2)样本众数:样本数据中出现次数最多的那个数据。(3)样本中位数:将数据按大小排列,位于最中间的数据或中间两个数据的平均数。(4)样本方差:。众数、中位数、平均数都是描述一组数据集中趋势的量,方差是用来描述一组数据波动情况
4、的特征数。三、频率分布直方图的解读(1)频率分布直方图的绘制由频率分布表求出每组频数ni;求出每组频率(n为样本容量);列出样本频率分布表;画出样本频率分布直方图,直方图横坐标表示各组分组情况,纵坐标为每组频率与组距比值,各小长方形的面积即为各组频率,各小长方形的面积总和为1。(2)样本估计总体步骤:总体抽取样本频率分布表频率分布直方图估计总体频率分布。样本容量越大,估计越精细,样本容量无限增大,频率分布直方图无限无限趋近概率分布密度曲线。(3)用样本平均数估计总体平均数,用样本标准差估计总体标准差。公式:,s2(aX+b)=a2s2(X)。四、线性回归线性回归是研究不具备确定的函数关系的两个
5、变量之间的关系(相关关系)的方法。对于一组具有线性相关关系的数据(x1,y1),(x2,y2),(xn,yn),其回归方程的求法为其中,(,)称为样本点的中心。步骤:画散点图,如散点图中的点基本分布在一条直线附近,则这条直线叫这两个变量的回归直线,直线斜率k0,称两个变量正相关;k10.828,有99.9%把握称“A取A1或A2”对“B取B1,B2”有关系;若10.828K26.635,有99%把握称“A取A1或A2”对“B取B1,B2”有关系;若6.635K23.841,有95%把握称“A取A1或A2”对“B取B1,B2”有关系;若K23.841,没有把握称A与B相关。题型归纳及思路提示题型
6、181 抽样方式 思路提示根据所抽取的对象与要求,若抽取的对象中有明显差异,考虑用分层抽样,否则选择简单随机抽样或系统抽样。当总体中的个体较少时,常采用简单随机抽样;当总体中的个体较多时,常采用系统抽样。例13.16(2012天津理9)某地区有小学150所,中学75所,大学25所。现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调査,应从小学中抽取 所学校,中学中抽取 所学校。解析:本地区共有学校150+75+25=250(所),所以从小学中应抽取(所),从中学中抽取(所)。变式1 (2012山东理4)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,9
7、60,分组后在第一组采用简单随机抽样的方法抽到的号码为9。抽到的32人中,编号落入区间1,450的人做问卷A,编号落入区间451,750的人做问卷B,其余的人做问卷C。则抽到的人中,做问卷B的人数为( )。A. 7 B. 9 C. 10 D. 15变式2 某校共有学生2000名,各年级男、女生人数如表13-9所示,已知在全校学生中任取一名,抽到二年级女生的概率为0.19,现用分层抽样的方法,在全校抽取64名学生,则应在三年级抽取的学生人数为( )。表13-9一年级二年级三年级女生373xy男生377370z变式3 某企业三月中旬生产A,B,C三种产品其3000件,根据分层抽样的结果,企业统计员
8、制作了统计表格,如表13-10所示,由于不小心,表格中的A,C产品的有的有关数据被污染看不清楚,统计员记得A产品样本容量比C产品的样本容量多10,由此可得C产品数量为_。表13-10产品类型ABC产品数量(件)1300产品样本数量(件)130题型182 样本分析用样本估计总体思路提示对样本进行分析并用样本估计总体,包括用样本数字特征估计总体数字特征和用样本的频率分布估计总体的频率分布。在进行样本分析时,应从统计图表中获取数据。体现在以下几个方面:(1)在频率分布直方图中,长方形面积=组距=频率,即随机变量的概率;(2)对于频数、频率、样本容量,已知其二必可求第三个;(3)随机变量在各组数据内的
9、频数之和为样本容量。例13.17(2013广东理17)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图13-16所示,其中茎为十位数,叶为个位数。(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人;(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率。分析:阅读茎叶图得出样本数据,利用平均数公式计算出样本均值。(2)根据样本算出优秀工人的比例,再估计12人中优秀工人的个数。(3)用组合数公式求出所有可能的组合的个数和符合条件“恰有1名优秀工人”的组合的个数,利用古典概型概率公式进行计算。解
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 年高 数学 复习 统计 案例
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。