2022届高考数学一轮复习-第4章-三角函数、解三角形-第6节-正弦定理、余弦定理教案-北师大版.doc
《2022届高考数学一轮复习-第4章-三角函数、解三角形-第6节-正弦定理、余弦定理教案-北师大版.doc》由会员分享,可在线阅读,更多相关《2022届高考数学一轮复习-第4章-三角函数、解三角形-第6节-正弦定理、余弦定理教案-北师大版.doc(10页珍藏版)》请在咨信网上搜索。
2022届高考数学一轮复习 第4章 三角函数、解三角形 第6节 正弦定理、余弦定理教案 北师大版 2022届高考数学一轮复习 第4章 三角函数、解三角形 第6节 正弦定理、余弦定理教案 北师大版 年级: 姓名: 正弦定理、余弦定理 [考试要求] 掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. 1.正弦、余弦定理 在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC的外接圆半径,则 定理 正弦定理 余弦定理 内容 ===2R a2=b2+c2-2bccos_A; b2=c2+a2-2cacos_B; c2=a2+b2-2abcos_C 变形 (1)a=2Rsin A,b=2Rsin B, c=2Rsin C; (2)a∶b∶c=sin A∶sin B∶sin C; (3)==2R cos A=; cos B=; cos C= 提醒:在△ABC中,已知两边和其中一边的对角,求第三边时,使用余弦定理比使用正弦定理简洁. 2.三角形常用面积公式 (1)S=a·ha(ha表示边a上的高); (2)S=absin C=acsin B=bcsin A; (3)S=r(a+b+c)(r为内切圆半径). 1.三角形内角和定理 在△ABC中,A+B+C=π;变形:=-. 2.三角形中的三角函数关系 (1)sin(A+B)=sin C;(2)cos(A+B)=-cos C; (3)sin =cos ;(4)cos =sin . 3.三角形中的射影定理 在△ABC中,a=bcos C+ccos B;b=acos C+ccos A;c=bcos A+acos B. 4.三角形中的大角对大边 在△ABC中,A>B⇔a>b⇔sin A>sin B. 一、易错易误辨析(正确的打“√”,错误的打“×”) (1)三角形中三边之比等于相应的三个内角之比.( ) (2)在△ABC中,若sin A>sin B,则A>B.( ) (3)在△ABC中,=.( ) (4)当b2+c2-a2>0时,△ABC为锐角三角形;当b2+c2-a2=0时,△ABC为直角三角形;当b2+c2-a2<0时,△ABC为钝角三角形.( ) [答案] (1)× (2)√ (3)√ (4)× 二、教材习题衍生 1.已知△ABC中,角A,B,C所对的边分别为a,b,c,若A=,B=,a=1,则b=( ) A.2 B.1 C. D. D [由=得b===×2=.] 2.在△ABC中,AB=5,AC=3,BC=7,则∠BAC=( ) A. B. C. D. C [由题意知,a=BC=7,b=AC=3,c=AB=5, 由余弦定理得cos∠BAC===-. 又因为∠BAC是△ABC的内角, 所以∠BAC=,故选C.] 3.在△ABC中,acos A=bcos B,则这个三角形的形状为________. 等腰三角形或直角三角形 [由正弦定理,得sin Acos A=sin Bcos B, 即sin 2A=sin 2B, 所以2A=2B或2A=π-2B, 即A=B或A+B=, 所以这个三角形为等腰三角形或直角三角形.] 4.在△ABC中,内角A,B,C的对边分别为a,b,c,已知c=5,B=,△ABC的面积为,则b=________. 7 [S△ABC=acsin B=×a×5×sin =a=,解得a=3. ∴b2=a2+c2-2accos B=32+52-2×3×5×=49, ∴b=7.] 考点一 利用正、余弦定理解三角形 解三角形的常见题型及求解方法 (1)已知两角A,B与一边a,由A+B+C=π及==,可先求出角C及b,再求出c. (2)已知两边b,c及其夹角A,由a2=b2+c2-2bccos A,先求出a,再求出角B,C. (3)已知三边a,b,c,由余弦定理可求出角A,B,C. (4)已知两边a,b及其中一边的对角A,由正弦定理=可求出另一边b的对角B,由C=π-(A+B),可求出角C,再由=可求出c,而通过=求角B时,可能有一解或两解或无解的情况. [典例1] (2019·全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c.设(sin B-sin C)2=sin2A-sin Bsin C. (1)求A; (2)若a+b=2c,求sin C. [解] (1)由已知得sin2B+sin2C-sin2A=sin Bsin C,故由正弦定理得b2+c2-a2=bc. 由余弦定理得cos A==. 因为0°<A<180°,所以A=60°. (2)由(1)知B=120°-C,由题设及正弦定理得sin A+sin(120°-C)=2sin C,即+cos C+sin C=2sin C,可得cos(C+60°)=-. 由于0°<C<120°,所以sin(C+60°)=, 故sin C=sin(C+60°-60°) =sin(C+60°)cos 60°-cos(C+60°)sin 60° =. 点评:在△ABC中,若A=m,则B+C=π-m.从而B=π-m-C或C=π-m-B,由此可消去B或C. 1.(2019·全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知asin A-bsin B=4csin C,cos A=-,则=( ) A.6 B.5 C.4 D.3 A [∵asin A-bsin B=4csin C, ∴由正弦定理得a2-b2=4c2,即a2=4c2+b2. 由余弦定理得cos A====-,∴=6. 故选A.] 2.[结构不良试题](2020·新高考全国卷Ⅰ)在①ac=,②csinA=3,③c=b这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c的值;若问题中的三角形不存在,说明理由. 问题:是否存在△ABC,它的内角A,B,C的对边分别为a,b,c,且sin A=sin B,C=,________? [解] 方案一:选条件①. 由C=和余弦定理得=. 由sin A=sin B及正弦定理得a=b. 于是=,由此可得b=c. 由①ac=,解得a=,b=c=1. 因此,选条件①时问题中的三角形存在,此时c=1. 方案二:选条件②. 由C=和余弦定理得=. 由sin A=sin B及正弦定理得a=b.于是=,由此可得b=c,B=C=,A=. 由②csin A=3,所以c=b=2,a=6. 因此,选条件②时问题中的三角形存在,此时c=2. 方案三:选条件③. 由C=和余弦定理得=. 由sin A=sin B及正弦定理得a=b. 于是=,由此可得b=c. 由③c=b,与b=c矛盾. 因此,选条件③时问题中的三角形不存在. 考点二 利用正、余弦定理解决三角形面积问题 1.求三角形面积的方法 (1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积. (2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键. 2.已知三角形面积求边、角的方法 (1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. [典例2] (1)(2020·长沙模拟)已知a,b,c分别为△ABC的内角A,B,C的对边,(3b-a)cos C=ccos A,c是a,b的等比中项,且△ABC的面积为3,则a+b=________. (2)(2020·全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c.已知B=150°. ①若a=c,b=2,求△ABC的面积; ②若sin A+sin C=,求C. (1) [由(3b-a)cos C=ccos A,得3sin Bcos C-sin Acos C=sin Ccos A,即3sin Bcos C=sin Acos C+cos Asin C=sin(A+C)=sin B,又sin B≠0,所以cos C=,得sin C=.由S△ABC=absin C=3,得ab×=3,得ab=9.又c是a,b的等比中项,所以c2=ab.由余弦定理c2=a2+b2-2abcos C得ab=a2+b2-ab. ∴a2+b2=ab=×9=15,即a2+b2=15,则(a+b)2=a2+b2+2ab=15+18=33,即a+b=.] (2)[解] ①由题设及余弦定理, 得28=3c2+c2-2×c2×cos 150°, 解得c=-2(舍去)或c=2,从而a=2. 因此△ABC的面积为×2×2×sin 150°=. ②在△ABC中,A=180°-B-C=30°-C, 所以sin A+sin C=sin(30°-C)+sin C=sin(30°+C), 故sin(30°+C)=. 而0°<C<30°,所以30°<30°+C<60°, 所以30°+C=45°,故C=15°. 1.在△ABC中,A,B,C所对的边分别为a,b,c,已知a2+b2-c2=ab,且acsin B=2sin C,则△ABC的面积为________. [因为a2+b2-c2=ab, 所以由余弦定理得cos C===,又0<C<π,所以C=.因为acsin B=2sin C,所以结合正弦定理可得abc=2c,所以ab=2.故S△ABC=absin C=×2sin =.] 2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2acos B. (1)证明:A=2B; (2)若△ABC的面积S=,求角A的大小. [解] (1)证明:由正弦定理得sin B+sin C=2sin Acos B, 故2sin Acos B=sin B+sin(A+B) =sin B+sin Acos B+cos Asin B, 于是sin B=sin(A-B). 又A,B∈(0,π),故0<A-B<π, 所以B=π-(A-B)或B=A-B, 因此A=π(舍去)或A=2B,所以A=2B. (2)由S=,得absin C=, 故有sin Bsin C=sin A=sin 2B=sin Bcos B, 由sin B≠0,得sin C=cos B. 又B,C∈(0,π).所以C=±B. 当B+C=时,A=; 当C-B=时,A=. 综上,A=或A=. 考点三 判断三角形的形状 1.判定三角形形状的两种常用途径 2.判定三角形的形状的注意点 在判断三角形的形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A,B,C的范围对三角函数值的影响,在等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解. [典例3] (1)设△ABC的内角A,B,C所对的边分别为a,b,c,若bcos C+ccos B=asin A,则△ABC的形状为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定 (2)在△ABC中,已知a-b=ccos B-ccos A. ①判断△ABC的形状; ②若C=120°,a=2,求c. (1)B [由正弦定理得sin Bcos C+sin Ccos B=sin2A, ∴sin(B+C)=sin2A, 即sin(π-A)=sin2A,sin A=sin2A. ∵A∈(0,π),∴sin A>0, ∴sin A=1, 即A=,∴△ABC为直角三角形.] (2)[解] ①由正弦定理==及a-b=ccos B-ccos A, 可得:sin A-sin B=sin Ccos B-sin Ccos A, 可得:sin(B+C)-sin(A+C)=sin Ccos B-sin Ccos A, 可得:sin Bcos C+cos Bsin C-sin Acos C-cos Asin C=sin Ccos B-sin Ccos A, 可得:sin Bcos C-sin Acos C=0, 则cos C(sin B-sin A)=0, 则cos C=0或sin B-sin A=0, 所以C=90°或A=B, 所以△ABC为直角三角形或等腰三角形. ②因为C=120°,则△ABC为等腰三角形,从而a=b=2, 由余弦定理c2=a2+b2-2abcos C,得c2=4+4-2×2×2×cos 120°, 所以c=2. 1.在△ABC中,角A,B,C的对边分别为a,b,c,若=,(b+c+a)(b+c-a)=3bc,则△ABC的形状是( ) A.直角三角形 B.等腰非等边三角形 C.等边三角形 D.钝角三角形 C [因为=,所以=.所以b=c.又(b+c+a)(b+c-a)=3bc,所以b2+c2-a2=bc,所以cos A===.因为A∈(0,π),所以A=.所以△ABC是等边三角形.] 2.在△ABC中,已知sin Bsin C=cos2,则△ABC的形状是( ) A.直角三角形 B.等腰三角形 C.等边三角形 D.等腰直角三角形 B [∵sin Bsin C=cos2=, ∴2sin Bsin C=-cos Bcos C+sin Bsin C+1, ∴cos Bcos C+sin Bsin C=cos(B-C)=1, ∵-π<B-C<π, ∴B-C=0,B=C, ∴三角形为等腰三角形,故选B.]- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 高考 数学 一轮 复习 三角函数 三角形 正弦 定理 余弦 教案 北师大
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:2022届高考数学一轮复习-第4章-三角函数、解三角形-第6节-正弦定理、余弦定理教案-北师大版.doc
链接地址:https://www.zixin.com.cn/doc/2168279.html
链接地址:https://www.zixin.com.cn/doc/2168279.html