2022高考数学一轮复习-解题思维6-高考中立体几何解答题的提分策略试题.docx
《2022高考数学一轮复习-解题思维6-高考中立体几何解答题的提分策略试题.docx》由会员分享,可在线阅读,更多相关《2022高考数学一轮复习-解题思维6-高考中立体几何解答题的提分策略试题.docx(7页珍藏版)》请在咨信网上搜索。
2022高考数学一轮复习 解题思维6 高考中立体几何解答题的提分策略试题 2022高考数学一轮复习 解题思维6 高考中立体几何解答题的提分策略试题 年级: 姓名: 第 7 页 共 7 页 解题思维6 高考中立体几何解答题的提分策略 1.[12分]如图6-1,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,PA=PD. (1)证明: BC⊥PB. (2)若PA⊥PD,PB=AB,求二面角A-PB-C的余弦值. 图6-1 2.[12分]如图6-2,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1的中点. (1)求证:AB1⊥平面A1BD. (2)求锐二面角A-A1D-B的余弦值. 图6-2 3.[2021惠州市二调,12分]一副标准的三角板(如图6-3)中,∠ABC为直角,∠A=60°,∠DEF为直角,DE=EF,BC=DF.把BC与DF重合,拼成一个三棱锥(如图6-4),设M是AC的中点,N是BC的中点. (1)求证:平面ABC⊥平面EMN. (2)若AC=4,二面角E-BC-A为直二面角,求直线EM与平面ABE所成角的正弦值. 图6-3 图6-4 4.[新角度题,12分]如图6-5,EC⊥平面ABC,BD∥EC,AC=AB=BD=12EC=2,点F为线段DE上的动点. (1)试在BC上找一点O,使得AO⊥CF,并证明. (2)在第(1)问的基础上,若AB⊥AC,则平面ACE与平面AOF所成的锐二面角的大小可否为π4? 图6-5 答 案 解题思维6 高考中立体几何解答题的提分策略 1.(1)如图D 6-1,取AD的中点E,连接PE,BE,BD, 图D 6-1 ∵PA=PD, ∴PE⊥AD. ∵底面ABCD为菱形,且∠BAD=60°, ∴△ABD为等边三角形, ∴BE⊥AD. ∵PE∩BE=E, PE,BE⊂平面PBE, ∴AD⊥平面PEB,又PB⊂平面PEB,∴AD⊥PB. ∵AD∥BC,∴BC⊥PB.(4分) (2)设AB=2,则AB=PB=AD=2,BE=3. ∵PA⊥PD,E为AD的中点, ∴PA=2,PE=1, ∴PE2+BE2=PB2,∴PE⊥BE. 以E为坐标原点,分别以EA,EB,EP 所在直线为x轴、y轴、z轴,建立如图D 6-2所示的空间直角坐标系,则A(1,0,0),B(0,3,0),P(0,0,1),C(-2,3,0), 图D 6-2 ∴AB=(-1,3,0),AP=(-1,0,1),BP=(0,-3,1),BC=(-2,0,0). 设平面PAB的法向量为n1=(x1,y1,z1),∵n1·AB=0,n1·AP=0, ∴-x1+3y1=0,-x1+z1=0,令x1=1,得z1=1,y1=33,∴n1=(1,33,1)为平面PAB的一个法向量. 设平面BPC的法向量为n2=(x2,y2,z2), 则n2·BP=0,n2·BC=0,∴-3y2+z2=0,-2x2=0, 令y2=-1,得x2=0,z2=-3,即n2=(0,-1,-3)为平面BPC的一个法向量. ∴n1·n2|n1|·|n2|=-277. 设二面角A-PB-C的平面角为θ,由图可知θ为钝角, 则cos θ=-277.(12分) 2.(1)取BC的中点O,连接AO. ∵△ABC为等边三角形, ∴AO⊥BC. 在正三棱柱ABC-A1B1C1中,平面ABC⊥平面BCC1B1, 又平面ABC∩平面BCC1B1=BC, ∴AO⊥平面BCC1B1. 取B1C1的中点O1,连接OO1,以O为原点,OB,OO1,OA的方向分别为x轴、y轴、z轴的正方向建立空间直角坐标系O-xyz,如图D 6-3所示,则B(1,0,0),D(-1,1,0),A1(0,2,3),A(0,0,3),B1(1,2,0), ∴AB1=(1,2,-3),BD=(-2,1,0),BA1=(-1,2,3), ∴AB1·BD=0,AB1·BA1=0, ∴AB1⊥BD,AB1⊥BA1.∵BD∩BA1=B,∴AB1⊥平面A1BD.(6分) (2)设平面A1AD的法向量为n=(x,y,z). ∵AD=(-1,1,-3),AA1=(0,2,0), ∴n·AD=0,n·AA1=0,∴-x+y-3z=0,2y=0,∴y=0,x=-3z, 令z=1,得n=(-3,0,1)为平面A1AD的一个法向量. 由(1)知AB1⊥平面A1BD,∴AB1为平面A1BD的一个法向量, ∴cos<n,AB1>=n·AB1|n|·|AB1|=-3-32×22=-64, ∴锐二面角A-A1D-B的余弦值为64.(12分) 3.(1)∵M是AC的中点,N是BC的中点, ∴MN∥AB,(1分) ∵AB⊥BC,∴MN⊥BC.(2分) ∵BE=EC,N是BC的中点,∴EN⊥BC.(3分) 又MN∩EN=N,MN⊂平面EMN,EN⊂平面EMN,(4分) ∴BC⊥平面EMN.(5分) 又BC⊂平面ABC, ∴平面ABC⊥平面EMN.(6分) (2)由(1)可知,EN⊥BC,MN⊥BC, ∴∠ENM为二面角E-BC-A的平面角, 又二面角E-BC-A为直二面角,∴∠ENM=90°,即EN⊥MN.(7分) 以点N为坐标原点,NM,NC,NE所在直线分别为x,y,z轴建立如图D 6-4所示的空间直角坐标系N-xyz,(8分) 图D 6-4 ∵AC=4,∴AB=2,BC=23,∴NE=3,MN=1, 则N(0,0,0),E(0,0,3),M(1,0,0),B(0,-3,0),A(2,-3,0), ∴EM=(1,0,-3),BE=(0,3,3),BA=(2,0,0).(9分) 设m=(x,y,z)为平面ABE的法向量,则m·BA=0,m·BE=0,即2x=0,3y+3z=0, 得x=0,令y=1,则z=-1, ∴平面ABE的一个法向量为m=(0,1,-1).(10分) 设直线EM与平面ABE所成的角为θ, 则sin θ=|cos<m,EM>|=|m·EM|m||EM||=322=64,(11分) 即直线EM与平面ABE所成角的正弦值为64.(12分) 4.(1)BC的中点即为所找的点O. ∵AB=AC,∴AO⊥BC, 又EC⊥平面ABC,AO⊂平面ABC,∴EC⊥AO.(2分) ∵BC∩EC=C,BC⊂平面BDEC,EC⊂平面BDEC,∴AO⊥平面BDEC. 又CF⊂平面BDEC,∴AO⊥CF.(4分) (2)以A为坐标原点,AB,AC所在直线分别为x轴、y轴,过点A且平行于EC的直线为z轴建立如图D 6-5所示的空间直角坐标系,则A(0,0,0),E(0,-2,4),D(-2,0,2),O(-1,-1,0), 图D 6-5 AO=(-1,-1,0),ED=(-2,2,-2).(6分) 设EF=λED(0≤λ≤1),则可得F(-2λ,2λ-2,4-2λ), 则AF=(-2λ,2λ-2,4-2λ). 设平面AOF的法向量为m=(x,y,z), 则m·AO=0,m·AF=0, 即-x-y=0,-2λx+(2λ-2)y+(4-2λ)z=0, 令x=1,则y=-1,z=2λ-12-λ,则m=(1,-1,2λ-12-λ)为平面AOF的一个法向量.(9分) 易得平面ACE的一个法向量为n=(1,0,0). 令|cos<m,n>|=|m·n||m||n|=1(2λ-12-λ)2+2=22,解得λ=12. 故当F为DE的中点时,平面ACE与平面AOF所成的锐二面角的大小为π4.(12分)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 高考 数学 一轮 复习 解题 思维 立体几何 解答 策略 试题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文