2022版高考数学大一轮复习-第9章-直线和圆的方程-第1讲-直线方程与两直线的位置关系备考试题.docx
《2022版高考数学大一轮复习-第9章-直线和圆的方程-第1讲-直线方程与两直线的位置关系备考试题.docx》由会员分享,可在线阅读,更多相关《2022版高考数学大一轮复习-第9章-直线和圆的方程-第1讲-直线方程与两直线的位置关系备考试题.docx(6页珍藏版)》请在咨信网上搜索。
2022版高考数学大一轮复习 第9章 直线和圆的方程 第1讲 直线方程与两直线的位置关系备考试题 2022版高考数学大一轮复习 第9章 直线和圆的方程 第1讲 直线方程与两直线的位置关系备考试题 年级: 姓名: 第九章 直线和圆的方程 第一讲 直线方程与两直线的位置关系 练好题·考点自测 1.[改编题]下列说法正确的是( ) A.直线的倾斜角越大,其斜率越大 B.若直线的斜率为tan α,则其倾斜角为α C.经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示 D.直线的截距即是直线与坐标轴的交点到原点的距离 2.[2020全国卷Ⅱ,8,5分][文]若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x-y-3=0的距离为( ) A.55 B.255 C.355 D.455 3.[2021安徽示范高中联考]已知点(1,-1)关于直线l1:y=x的对称点为A,设直线l2经过点A,则当点B(2,-1)到直线l2的距离最大时,直线l2的方程为( ) A.2x+3y+5=0 B.3x-2y+5=0 C.3x+2y+5=0 D.2x-3y+5=0 4.[2016浙江,4,5分]若平面区域x+y-3≥0,2x-y-3≤0,x-2y+3≥0夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( ) A.355 B.2 C.322 D.5 5.[2016四川,10,5分][文]设直线l1,l2分别是函数f(x)=-lnx,0<x<1,lnx,x>1图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B,则△PAB的面积的取值范围是( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞) 6.[2020四川五校联考]过直线x+y=0上一点P作圆(x+1)2+(y-5)2=2的两条切线l1,l2,A,B为切点,当直线l1,l2关于直线x+y=0对称时,∠APB=( ) A.30° B.45° C.60° D.90° 7.[2021上海模拟]过点(2,3)且在两坐标轴上的截距互为相反数的直线方程为 . 8.[2021山西摸底测试]已知a>0,b>0,若直线(a-1)x+2y-1=0与直线x+by=0互相垂直,则ab的最大值是 . 拓展变式 1.(1)已知直线l1:ax-2y=2a-4,l2:2x+a2y=2a2+4,当0<a<2时,直线l1,l2与两坐标轴围成一个四边形,当四边形的面积最小时,实数a= . (2)过直线2x+7y-4=0与7x-21y-1=0的交点,且和A(-3,1),B(5,7)等距离的直线方程为 . 2.已知直线l的方程为3x+4y-12=0, (1)求过点(-1,3),且与l平行的直线l'的方程; (2)求过点(-1,3),且与l垂直的直线l'的方程; (3)若直线l'与l垂直,且l'与两坐标轴围成的三角形的面积为4,求直线l'的方程. 3.(1)[2020全国卷Ⅲ,8,5分][文]点(0,-1)到直线y=k(x+1)距离的最大值为( ) A.1 B.2 C.3 D.2 (2)[2020黑龙江哈尔滨模拟]若直线y=-33x+1和x轴、y轴分别交于点A,B,以线段AB为边在第一象限内作等边三角形ABC.若在第一象限内有一点P(m,12),使得△ABP和△ABC的面积相等,则m的值为( ) A.332 B.23 C.532 D.33 答 案 第九章 直线和圆的方程 第一讲 直线方程与两直线的位置关系 1.C 对于选项A,当直线的倾斜角α1=135°,α2=45°时,α1>α2,但其对应斜率k1<k2,故选项A错误;对于选项B,tanα中的 α不一定在[0,π)内,倾斜角α必在[0,π)内,故选项B错误;对于选项D,截距不是距离,截距可为正数、负数或零,而距离只能是零或正数,选C. 2.B 因为圆与两坐标轴都相切,点(2,1)在该圆上,所以可设该圆的方程为(x-a)2+(y-a)2=a2(a>0),所以(2-a)2+(1-a)2=a2,即a2-6a+5=0,解得a=1或a=5,所以圆心的坐标为(1,1)或(5,5),所以圆心到直线2x-y-3=0的距离为|2×1-1-3|22+(-1)2=255或|2×5-5-3|22+(-1)2=255,故选B. 3.B 易知A(-1,1).设点B(2,-1)到直线l2的距离为d,当d=|AB|时取得最大值,此时直线l2垂直于直线AB,又-1kAB=32,所以直线l2的方程为y-1=32(x+1),即3x-2y+5=0.故选B. 4.B 不等式组x+y-3≥0,2x-y-3≤0,x-2y+3≥0表示的平面区域如图D 9-1-1中阴影部分所示,其中A(1,2),B(2,1),当两条平行直线间的距离最小时,两平行直线分别过点A,点B,又两平行直线的斜率为1,直线AB的斜率为-1,所以线段AB的长度就是分别过A,B两点的两平行直线间的距离,易得|AB|=2,即两条平行直线间的距离的最小值是2,故选B. 图D 9-1-1 5.A 不妨设P1(x1,ln x1),P2(x2,-ln x2),P(xP,yP),由于l1⊥l2,所以1x1×(-1x2)=-1,则x1=1x2.又切线l1:y-ln x1=1x1(x-x1),l2:y+ln x2=-1x2(x-x2),于是A(0,ln x1-1),B(0,1+ln x1),所以|AB|=2.由y-lnx1=1x1(x-x1),y+lnx2=-1x2(x-x2),解得xP=2x1+1x1,所以S△PAB=12×2×xP=2x1+1x1.因为x1>1,所以x1+1x1>2,所以S△PAB的取值范围是(0,1),故选A. 6.C 解法一 如图D 9-1-2,设圆(x+1)2+(y-5)2=2的圆心为C,则C(-1,5),则点C不在直线y=-x上,要满足l1,l2关于直线y=-x对称,则PC必然垂直于直线y=-x,所以线段PC所在直线的斜率kPC=1,则线段PC所在的直线l:y-5=x+1,即y=x+6,与y=-x联立,得P(-3,3). 所以|PC|=(-1+3)2+(5-3)2=22.设∠APC=α,则∠APB=2α,在△APC中,sin α=|AC||PC|=222=12,故α=30°,所以∠APB=2α=60°.故选C. 图D 9-1-2 解法二 如图D 9-1-2,设圆(x+1)2+(y-5)2=2的圆心为C,则C(-1,5),则点C不在直线y=-x上,要满足l1,l2关于直线y=-x对称,则PC必然垂直于直线y=-x,所以|PC|=412+12=22,易知圆的半径r=2,sin∠APC=|AC||PC|=12,则∠APC=30°,所以∠APB=60°.故选C. 7.3x-2y=0或x-y+1=0 当直线过原点时,直线的斜率为k=3-02-0=32,此时直线方程为y=32x,即3x-2y=0.当直线不过原点时,设直线方程为xa+y-a=1,把(2,3)代入可得a=-1,此时直线方程为x-y+1=0.故填3x-2y=0或x-y+1=0. 8.18 由两条直线互相垂直得(a-1)×1+2b=0,即a+2b=1,又a>0,b>0,所以ab=12(a·2b)≤12(a+2b2)2=18,当且仅当a=12,b=14时取等号.故ab的最大值是18. 1.(1)12 由题意知直线l1,l2恒过定点P(2,2),直线l1的纵截距为2-a,因为0<a<2,所以2-a>0,直线l2的横截距为a2+2,所以四边形的面积S=12×2(2-a)+12×2(a2+2)=a2-a+4=(a-12)2+154,所以当a=12时,面积最小. (2)21x-28y-13=0或x=1 因为A,B到直线7x-21y-1=0的距离不相等,所以可设所求直线方程为2x+7y-4+λ(7x-21y-1)=0, 即(2+7λ)x+(7-21λ)y+(-4-λ)=0, 由点A(-3,1),B(5,7)到所求直线的距离相等,可得 |(2+7λ)×(-3)+(7-21λ)×1-4-λ|(2+7λ)2+(7-21λ)2= |(2+7λ)×5+(7-21λ)×7-4-λ|(2+7λ)2+(7-21λ)2, 整理可得|43λ+3|=|113λ-55|,解得λ=2935或λ=13,所以所求的直线方程为21x-28y-13=0或x=1. 2.(1)解法一 直线l的方程可化为y=-34x+3,可知l的斜率为-34,因为l'与l平行,所以直线l'的斜率为-34. 又l'过点(-1,3),所以由点斜式得直线l'的方程为y-3=-34(x+1),即3x+4y-9=0. 解法二 由l'与l平行,可设l'的方程为3x+4y+m=0(m≠-12), 将(-1,3)代入,得m=-9,于是所求直线方程为3x+4y-9=0. (2)解法一 直线l的方程可化为y=-34x+3,可知l的斜率为-34,因为l'与l垂直,所以直线l'的斜率为43. 又l'过点(-1,3),所以由点斜式得直线方程为y-3=43(x+1), 即4x-3y+13=0. 解法二 由l'与l垂直,可设l'的方程为4x-3y+n=0, 将(-1,3)代入,得n=13,于是所求直线方程为4x-3y+13=0. (3)由l'与l垂直,可设直线l'的方程为4x-3y+p=0, 则l'在x轴上的截距为-p4,在y轴上的截距为p3. 由题意可知,l'与两坐标轴围成的三角形的面积S=12·|p3|·|-p4|=4,求得p=±46. 所以直线l'的方程为4x-3y+46=0或4x-3y-46=0. 3.(1)B 记点A(0,-1),直线y=k(x+1)恒过点B(-1,0),当AB垂直于直线y=k(x+1)时,点A(0,-1)到直线y=k(x+1)的距离最大,且最大值为|AB|=2,故选B. (2)C 过点C作直线l,使l∥AB,则点P在直线l上.由题意易知,A(3,0),B(0,1),则|AB|=2,所以点C到直线AB的距离d=22-12=3.直线AB的方程可化为3x+3y-3=0,由△ABP和△ABC的面积相等,可知点P到直线AB的距离等于点C到直线AB的距离,即|3m+3×12-3|(3)2+32=3,解得m=-332或m=532.因为点P在第一象限,所以m=532.故选C.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 高考 数学 一轮 复习 直线 方程 位置 关系 备考 试题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:2022版高考数学大一轮复习-第9章-直线和圆的方程-第1讲-直线方程与两直线的位置关系备考试题.docx
链接地址:https://www.zixin.com.cn/doc/2157659.html
链接地址:https://www.zixin.com.cn/doc/2157659.html