2022高考数学一轮复习-第2章-函数概念与基本初等函数Ⅰ第8讲-函数模型及其应用试题1.docx
《2022高考数学一轮复习-第2章-函数概念与基本初等函数Ⅰ第8讲-函数模型及其应用试题1.docx》由会员分享,可在线阅读,更多相关《2022高考数学一轮复习-第2章-函数概念与基本初等函数Ⅰ第8讲-函数模型及其应用试题1.docx(5页珍藏版)》请在咨信网上搜索。
2022高考数学一轮复习 第2章 函数概念与基本初等函数Ⅰ第8讲 函数模型及其应用试题1 2022高考数学一轮复习 第2章 函数概念与基本初等函数Ⅰ第8讲 函数模型及其应用试题1 年级: 姓名: 第 5 页 共 5 页 第二章 函数的概念与基本初等函数I 第八讲 函数模型及其应用 练好题·考点自测 1.[改编题]下列说法正确的是( ) A.函数y=2x的函数值比y=x2的函数值大 B.不存在x0,使ax0<x0n<logax0 C.在(0,+∞)上,随着x的增大,y=ax(a>1)的增长速度会超过并远远大于y=xa(a>0)的增长速度 D.“指数爆炸”是对指数型函数y=a·bx+c(a≠0,b>0,b≠1)的增长速度越来越快的形象比喻 2.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( ) x 1.992 3 4 5.15 6.126 y 1.517 4.041 8 7.5 12 18.01 A.y=2x-2 B.y=12(x2-1) C.y=log2x D.y=log12x 3.下列函数中,随着x的增大,y也增大,且增长速度最快的是( ) A.y=0.001ex B.y=1 000ln x C.y=x1 000 D.y=1 000·2x 4.[2020全国卷Ⅱ,3,5分][理]在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1 200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1 600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A.10名 B.18名 C.24名 D.32名 5.[2020山东,6,5分]基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=ert描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 2≈0.69)( ) A.1.2天 B.1.8天 C.2.5天 D.3.5天 6.[2017北京,8,5分][理]根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与MN最接近的是( ) (参考数据:lg 3≈0.48) A.1033 B.1053 C.1073 D.1093 拓展变式 1.[四川高考,5分][理]某食品的保鲜时间y(单位:时)与储藏温度x(单位:℃)满足函数关系y=ekx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是 小时. 2.[2020江苏南通第二次调研]中国高铁的快速发展给群众的出行带来巨大便利,极大地促进了区域经济社会的发展.已知某条高铁线路通车后,发车时间间隔t(单位:分钟)满足5≤t≤25,t∈N*,经测算,高铁的载客量与发车时间间隔t有关:当20≤t≤25时,高铁为满载状态,载客量为1 000人;当5≤t<20时,载客量会在满载的基础上减少,减少的人数与(20-t)2成正比,且发车时间间隔为5分钟时高铁的载客量为100人.记发车时间间隔为t分钟时,高铁的载客量为P(t). (1)求P(t)的表达式; (2)若该线路发车时间间隔为t分钟时的净收益Q(t)=t4P(t)-40t2+650t-2 000,当发车时间间隔为多少时,单位时间的净收益Q(t)t最大? 3.某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边夹角为60°(如图2-8-2),考虑防洪堤的坚固性及石块用料等因素,设计其横断面面积为93平方米,且高度不低于3米.记防洪堤横断面的腰长为x米,外周长(梯形的上底线段BC与两腰长的和)为y米.要使防洪堤的上面与两侧面的水泥用料最省(即横断面的外周长最小),则防洪堤横断面的腰长为 米. 图2-8-2 4.某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y(单位:微克)与时间t(单位:时)之间近似满足如图2-8-3所示的曲线. (1)写出第一次服药后y与t之间的函数关系式y=f(t); (2)据进一步测定,每毫升血液中含药量不少于0.25微克时治疗疾病有效,求服药一次后治疗疾病有效的时间. 图2-8-3 答 案 第八讲 函数模型及其应用 1.C 当x=2时,函数y=2x的函数值与y=x2的函数值相等,排除A;当a=x0=12,n=14时,不等式成立,排除B;“指数爆炸”是对指数型函数y=a·bx+c(a>0,b>1)的增长速度越来越快的形象比喻,排除D.选C. 2.B 由题中表格可知函数在(0,+∞)上是增函数,且y随x的增大而增大,且增长速度越来越快,分析选项可知B符合,故选B. 3.A 在对数函数、幂函数、指数函数中,指数函数的增长速度最快,故排除B,C;指数函数中,当底数大于1时,底数越大,函数的增长速度就越快,故选A. 4.B 由题意知超市第二天能完成1 200份订单的配货,如果没有志愿者帮忙,则超市第二天会积压超过500+(1 600-1 200)=900(份)订单的概率为0.05,因此要使第二天完成积压订单及当日订单的配货的概率不小于0.95,至少需要志愿者90050=18(名),故选B. 5.B ∵R0=1+rT,∴3.28=1+6r,∴r=0.38.若I(t1)=e0.38t1,I(t2)=e0.38t2,I(t2)=2I(t1),则e0.38(t2-t1)=2,0.38(t2-t1)=ln 2≈0.69,t2-t1≈1.8,故选B. 6.D 因为lg 3361=361×lg 3≈361×0.48≈173,所以M≈10173,则MN≈101731080=1093,故选D. 1.24 由题意得eb=192,e22k+b=48,即eb=192,e11k=12,所以该食品在33 ℃的保鲜时间是y=e33k+b=(e11k)3·eb=(12)3×192=24. 2.(1)当5≤t<20时,设P(t)=1 000-k(20-t)2(k≠0), 因为P(5)=100,所以1 000-k(20-5)2=100,解得k=4. 因此P(t)=1000-4(20-t)2,5≤t<20,t∈N*,1000,20≤t≤25,t∈N*. (2)①当5≤t<20时,Q(t)=t4P(t)-40t2+650t-2 000=-t3+500t-2 000,因此y(t)=Q(t)t=-t2-2000t+500,5≤t<20. 因为y'(t)=-2t+2000t2=-2(t3-1000)t2,当5≤t<10时,y'(t)>0,y(t)单调递增,当10<t<20时,y'(t)<0,y(t)单调递减, 所以y(t)max=y(10)=200. ②当20≤t≤25时,Q(t)=-40t2+900t-2 000, 因此y(t)=Q(t)t=900-40(t+50t),20≤t≤25. 因为y'(t)=-40(t2-50)t2<0,所以y(t)在[20,25]上单调递减, 所以y(t)max=y(20)=0. 综上,当发车时间间隔为10分钟时,单位时间的净收益Q(t)t最大. 3.23 设横断面的高为h米.根据题意知,93=12(AD+BC)h,其中AD=BC+2·x2=BC+x,h=32x,所以93=12(2BC+x)·32x,得BC=18x-x2,由h=32x≥3,BC=18x-x2>0,得2≤x<6.所以y=BC+2x=18x+3x2≥218x·3x2=63,当且仅当18x=3x2,即x=23时取等号.故所求防洪堤横断面的腰长为23米. 4.(1)由题图,设y=kt,0≤t≤1,(12)t-a,t>1. 当t=1时,由y=4,得k=4, 由(12)1-a=4,得a=3. 所以y=4t,0≤t≤1,(12)t-3,t>1. (2)由y≥0.25得0≤t≤1,4t≥0.25 或t>1,(12)t-3≥0.25,解得116≤t≤5. 故服药一次后治疗疾病有效的时间是5-116=7916(时).- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 高考 数学 一轮 复习 函数 概念 基本 初等 模型 及其 应用 试题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:2022高考数学一轮复习-第2章-函数概念与基本初等函数Ⅰ第8讲-函数模型及其应用试题1.docx
链接地址:https://www.zixin.com.cn/doc/2156276.html
链接地址:https://www.zixin.com.cn/doc/2156276.html