2022版高考数学大一轮复习-第6章-数列-第4讲-数列求和及数列的综合应用备考试题.docx
《2022版高考数学大一轮复习-第6章-数列-第4讲-数列求和及数列的综合应用备考试题.docx》由会员分享,可在线阅读,更多相关《2022版高考数学大一轮复习-第6章-数列-第4讲-数列求和及数列的综合应用备考试题.docx(5页珍藏版)》请在咨信网上搜索。
2022版高考数学大一轮复习 第6章 数列 第4讲 数列求和及数列的综合应用备考试题 2022版高考数学大一轮复习 第6章 数列 第4讲 数列求和及数列的综合应用备考试题 年级: 姓名: 第六章 数 列 第四讲 数列求和及数列的综合应用 拓展变式 1.[2020济南市6月模拟]已知数列{an}的前n项和为Sn,且Sn=12n2+12n. (1)求{an}的通项公式; (2)设bn=an,n为奇数,2an,n为偶数,求数列{bn}的前2n项和T2n. 2.[2020全国卷Ⅲ,17,12分]设数列{an}满足a1=3,an+1=3an-4n. (1)计算a2,a3,猜想{an}的通项公式并加以证明; (2)求数列{2nan}的前n项和Sn. 3.[2017全国卷Ⅱ,15,5分]等差数列{an}的前n项和为Sn,a3=3,S4=10,则k=1n1Sk= . 4.已知平面向量a=(lgx,1),b=(1,lg y)满足a·b=12,且S=lgxn+lg(xn-1y)+lg(xn-2y2)+…+lg(xyn-1)+lgyn,则S= . 5.设an=(-1)n-1·n2,则a1+a2+a3+…+a51= . 6.[2020江苏,11,5分]设{an}是公差为d的等差数列,{bn}是公比为q的等比数列.已知数列{an+bn}的前n项和Sn=n2-n+2n-1(n∈N*),则d+q的值是 . 7.[2020郑州市三测]已知等比数列{an}的首项为32,公比为-12,前n项和为Sn,且对任意的n∈N*,有A≤3Sn-1Sn≤B恒成立,则B-A的最小值为 . 8.[2017全国卷Ⅰ,12,5分]几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( ) A.440 B.330 C.220 D.110 9.河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟.现有一石窟的某处浮雕共7层,每上层的数量是下层的2倍,总共有1 016个浮雕,这些浮雕构成一幅优美的图案.若从最下层往上,浮雕的数量构成一个数列{an},则log2(a3a5)的值为( ) A.8 B.10 C.12 D.16 答 案 第六章 数 列 第四讲 数列求和及数列的综合应用 1.(1)因为Sn=12n2+12n, 所以当n=1时,a1=S1=1, 当n≥2时,an=Sn-Sn-1=12n2+12n-[12(n-1)2+12(n-1)]=n, 又n=1时符合上式, 所以an=n. (2)因为bn=n,n为奇数,2n,n为偶数, 所以对任意的k∈N+,b2k+1-b2k-1=(2k+1)-(2k-1)=2,则{b2k-1}是以1为首项,2为公差的等差数列; b2k+2b2k=22k+222k=4,则{b2k}是以4为首项,4为公比的等比数列. 所以T2n=(b1+b3+b5+…+b2n-1)+(b2+b4+b6+…+b2n) =(1+3+5+…+2n-1)+(22+24+26+…+22n) =n(1+2n-1)2+4(1-4n)1-4 =n2+4n+13-43. 2.(1)a2=5,a3=7. 猜想an=2n+1.由已知可得 an+1-(2n+3)=3[an-(2n+1)], an-(2n+1)=3[an-1-(2n-1)], …… a2-5=3(a1-3). 因为a1=3,所以an=2n+1. (2)由(1)得2nan=(2n+1)2n, 所以Sn=3×2+5×22+7×23+…+(2n+1)×2n ①. 从而2Sn=3×22+5×23+7×24+…+(2n+1)×2n+1 ②. ①-②得-Sn=3×2+2×22+2×23+…+2×2n-(2n+1)×2n+1. 所以Sn=(2n-1)2n+1+2. 3.2nn+1 设等差数列{an}的首项为a1,公差为d,依题意,知a1+2d=3,4a1+6d=10,即a1+2d=3,2a1+3d=5,解得a1=1,d=1,所以Sn=n(n+1)2,因此∑k=1n1Sk=2(1-12+12-13+…+1n-1n+1)=2nn+1. 4.6n(n+1) 因为平面向量a=(lgx,1),b=(1,lg y)满足a·b=12, 所以lgx+lgy=12,所以lg(xy)=12. 因为S=lgxn+lg(xn-1y)+lg(xn-2y2)+…+lg(xyn-1)+lgyn, 所以S=lgyn+lg(xyn-1)+…+lg(xn-2y2)+lg(xn-1y)+lgxn, 以上两式相加得, 2S=(lgxn+lgyn)+[lg(xn-1y)+lg(xyn-1)]+…+(lgyn+lgxn) =lg(xn·yn)+lg(xn-1y·xyn-1)+…+lg(yn·xn) =n[lg(xy)+lg(xy)+…+lg(xy)] =n(n+1)lg(xy) =12n(n+1), 所以S=6n(n+1). 5.1 326 a1+a2+a3+…+a51=12-22+32-42+…+492-502+512=1+(3-2)(3+2)+(5-4)(5+4)+…+ (51-50)(51+50)=1+2+3+4+5+…+50+51=51×(1+51)2=1 326. 6.4 解法一 当n=1时,S1=a1+b1=1 ①,当n≥2时,an+bn=Sn-Sn-1=2n-2+2n-1,则a2+b2=4 ②,a3+b3=8 ③,a4+b4=14 ④,②-①得d+b1(q-1)=3 ⑤,③-②得d+b2(q-1)=4 ⑥,④-③得d+b3(q-1)=6 ⑦,⑥-⑤得b1(q-1)2=1,⑦-⑥得b2(q-1)2=2,则q=2,b1=1,d=2,所以d+q=4. 解法二 由题意可得S1=a1+b1=1,当n≥2时,an+bn=Sn-Sn-1=2n-2+2n-1,易知当n=1时也成立,则a1+(n-1)d+b1qn-1=dn+a1-d+b1qn-1=2n-2+2n-1对任意正整数n恒成立,则d=2,q=2,d+q=4. 解法三 由等差数列和等比数列的前n项和的特征可得等差数列{an}的前n项和Hn=n2-n,等比数列{bn}的前n项和Tn=2n-1,则d=2,q=2,d+q=4. 7.3512 因为等比数列{an}的首项为32,公比为-12,所以Sn=32[1-(-12)n]1-(-12)=1-(-12)n,令f(n)=3Sn-1Sn=3[1-(-12)n]-11-(-12)n=3-3(-12)n-11-(-12)n. 当n为奇数时,f(n)=3+32n-11+12n=3+32n-2n2n+1=3+32n-2n+1-12n+1=3+32n-1+12n+1=2+32n+12n+1,此时f(n)是关于n的减函数,所以f(n)≤f(1)=236,又2n>0,所以f(n)>2,即当n为奇数时,2<f(n)≤236. 当n为偶数时,f(n)=3-32n-11-12n=3-32n-2n2n-1=3-32n-2n-1+12n-1=3-32n-1-12n-1=2-(32n+12n-1),此时f(n)是关于n的增函数,所以f(n)≥f(2)=1112,因为2n≥4,2n-1>0,所以f(n)<2,即当n为偶数时,1112≤f(n)<2. 综上可知,1112≤f(n)<2或2<f(n)≤236.又A≤3Sn-1Sn≤B恒成立,所以A≤1112,B≥236,则-A≥-1112,所以B-A≥3512,所以B-A的最小值为3512. 8.A 对数列进行分组,如下所示, 则该数列前k组的项数和为1+2+3+…+k=k(k+1)2,由题意可知N>100,即k(k+1)2>100,结合k∈N*,解得k≥14,即N出现在第13组之后.又第k组所有项的和为1-2k1-2=2k-1,所以前k组所有项的和为1+(1+2)+…+(1+2+…+2k-1)=(21-1)+(22-1)+…+(2k-1)=(21+22+…+2k)-k=2k+1-k-2. 设满足条件的N在第(t+1)(t∈N*,t≥13)组,且第N项为第(t+1)组的第m(m∈N*)个数,第(t+1)组的前m项和为1+2+22+…+2m-1=2m-1. 要使该数列的前N项和为2的整数幂,需使2m-1与-t-2互为相反数,即2m-1=2+t,所以2m=t+3,所以m=log2(t+3),所以m=4,t=13时,N=13×(13+1)2+4=95<100,不满足题意,当m=5,t=29时,N=29×(29+1)2+5=440,当m>5时,N>440,故选A. 9.C 依题意得,数列{an}是以2为公比的等比数列,因为最下层的浮雕的数量为a1,所以S7=a1(1-27)1-2=1 016,解得a1=8,所以an=8×2n-1=2n+2(1≤n≤7,n∈N*),所以a3=25,a5=27,从而a3a5=25×27=212,所以log2(a3a5)=log2212=12.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 高考 数学 一轮 复习 数列 求和 综合 应用 备考 试题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文