立高中数学必修二立体几何知识点总结及例题.doc
《立高中数学必修二立体几何知识点总结及例题.doc》由会员分享,可在线阅读,更多相关《立高中数学必修二立体几何知识点总结及例题.doc(4页珍藏版)》请在咨信网上搜索。
立体几何初步 一、柱、锥、台、球的图形 (1)棱柱: (2)棱锥 (3)棱台: (4)圆柱: (5)圆锥: (6)圆台: (7)球体: 二、空间几何体的三视图 三视图:主视图、左视图、俯视图【注:主视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;左视图反映了物体的高度和宽度。】 三、空间几何体的直观图——斜二测画法 斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变; ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。 四、柱体、锥体、台体的表面积与体积 (1)几何体的表面积为几何体各个面的面积的和。 (2)特殊几何体表面积公式(c为底面周长,h为高,h’为斜高,l为母线) (3)柱体、锥体、台体的体积公式 (4)球体的表面积和体积公式:V= ; S= 五、空间点、直线、平面的位置关系 公理1:如果一条直线的两点在一个平面内,那么这条直线上所有的点都在这个平面内。【】 公理2:经过不在同一条直线上的三点,有且只有一个平面 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。【P∈α∩β→α∩β=l】 公理4:平行于同一条直线的两条直线互相平行 等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。 1、空间直线之间的位置关系: ① 共面直线(相交直线、平行直线)②异面直线 (1)异面直线所成角: 作平行,令两线相交,所得锐角或直角,即所成角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,这两条异面直线互相垂直。 (2)求异面直线所成角步骤: ①利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。 ②证明作出的角即为所求角 ③利用三角形来求角 2、空间直线与平面之间的位置关系 直线在平面内——有无数个公共点;【aα】 直线与平面相交一一有且只有一个公共点;【a∩α=A】 直线与平面平行一一没有公共点;【a∥α】 注:直线与平面相交或平行统称为直线在平面外 3、平面与平面之间的位置关系: 两平面平行——没有公共点;【α∥β】 两平面相交——有一条公共直线;【α∩β=B】 六、空间中的平行问题 1、直线与平面平行的判定及其性质 ①线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。【线线平行线面平行】 ②线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。【线面平行线线平行】 2、平面与平面平行的判定及其性质 (1)两个平面平行的判定定理: ①如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。 【线面平行→面面平行】 ②如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。 【线线平行→面面平行】 ③垂直于同一条直线的两个平面平行, (2)两个平面平行的性质定理: ①如果两个平面平行,那么某一个平面内的直线与另一个平面平行。 【面面平行→线面平行】 ②如果两个平行平面都和第三个平面相交,那么它们的交线平行。 【面面平行→线线平行】 七、空间中的垂直问题 1、线线、面面、线面垂直的定义 ①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。 ②线面垂直:如果一条直线和一个平面内的任何一条直线都垂直,就说这条直线和这个平面垂直。 ③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。 2、垂直关系的判定和性质定理 ①线面垂直判定定理和性质定理 判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。 性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。 ②面面垂直的判定定理和性质定理 判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。 性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。 八、 空间角问题 1、直线与直线所成的角 ① 两平行直线所成的角:规定为。 ② 两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。 ③ 两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线a’,b’,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。 2、直线和平面所成的角 ①平面的平行线与平面所成的角:规定为 0o。 ②平面的垂线与平面所成的角:规定为90o。 ③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角叫做这条直线和这个平面所成的角。 ●求斜线与平面所成角(思路类似于求异面直线所成角):“一作,二证,三计算”。 (1)作斜线上任意一点到面的垂线;并得到射影; (2)连接斜线、垂线、射影构成三角形; (3)根据三角形算出斜线与平面的夹角。 3、二面角和二面角的平面角 (1)二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。 (2)二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。 (3)直二面角:平面角是直角的二面角叫直二面角。 两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角 (4)求二面角的方法 ①定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角 ②垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角 例.下面几何体中,过轴的截面一定是圆面的是( ) A.圆柱 B.圆锥 C.球 D.圆台 分析:圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形,球的轴截面是圆面,所以A、B、D均不正确. 答案:C 例. 已知一个正方形的直观图是一个平行四边形,其中有一边长为4,则此正方形的面积是( ) A.16 B.64 C.16或64 D.都不对 分析:根据直观图的画法,平行于x轴的线段长度不变,平行于y轴的线段变为原来的一半,于是长为4的边如果平行于x轴,则正方形边长为4,面积为16,边长为4的边如果平行于y轴,则正方形边长为8,面积是64. 答案:C 例. 关于“斜二测画法”,下列说法不正确的是( ) A.原图形中平行于x轴的线段,其对应线段平行于x′轴,长度不变 B.原图形中平行于y轴的线段,其对应线段平行于y′轴,长度变为原来的 C.在画与直角坐标系xOy对应的x′O′y′时,∠x′O′y′必须是45° D.在画直观图时,由于选轴的不同,所得的直观图可能不同 分析:在画与直角坐标系xOy对应的x′O′y′时,∠x′O′y′也可以是135°,所以C不正确. 答案:C 例. 一个三角形用斜二测画法画出来的直观图是边长为2的正三角形,则原三角形的面积是( ) A. B. C. D.都不对 分析:直观图的面积为:12×2×2×sin60°=3;由斜二测法中直观图和原图面积关系得S直观S原图=24,∴原三角形的面积=324=26 答案:A 例. 一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积等于( ) A. B. C. D. 分析:直观图的面积为:(1+1+2)×222=1+22;由斜二测法中直观图和原图面积关系得S直观S原图=24,∴原三角形的面积=1+2224=2+2. 答案:D 例(2007宁夏模拟,理6)长方体AC1的长、宽、高分别为3、2、1,从A到C1沿长方体的表面的最短距离为( ) A. B. C. D. 答案:C 例.(2005湖南数学竞赛,9)若干个棱长为2、3、5的长方体,依相同方向拼成棱长为90的正方体,则正方体的一条对角线贯穿的小长方体的个数是( ) A.64 B.66 C.68 D.70 分析:由2、3、5的最小公倍数为30,由2、3、5组成的棱长为30的正方体的一条对角线穿过的长方体为整数个,所以由2、3、5组成棱长为90的正方体的一条对角线穿过的小长方体的个数应为3的倍数. 答案:B- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 立体几何 知识点 总结 例题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文