本科毕业论文---基于labview转子轴心轨迹测量与识别系统开发.doc
《本科毕业论文---基于labview转子轴心轨迹测量与识别系统开发.doc》由会员分享,可在线阅读,更多相关《本科毕业论文---基于labview转子轴心轨迹测量与识别系统开发.doc(63页珍藏版)》请在咨信网上搜索。
1、哈尔滨理工大学学士学位论文基于LabVIEW转子轴心轨迹测量与识别系统开发摘 要转子轴心轨迹作为转子振动状态的一类重要图形征兆,包含了大量的故障信息,是诊断专家在诊断过程中采用的一项不可缺少的故障征兆信息,由于轴心轨迹的提纯效果、轴心轨迹的特征自动提取和形状自动识别的水平,都直接影响着故障诊断专家系统的智能化水平,因此我们需要对轴心轨迹全面的进行研究。首先搭建了转子故障实验台,在该实验台上能够模拟一些典型的转子故障,如不平衡、不对中、转子弯曲等。在此基础上,搭建信号测量电路,包括传感器、电荷放大器、滤波器、数据采集卡等器件,能够测量转子旋转时的两个相互垂直方向的径向位移。其次编制轴心轨迹测量及
2、识别程序,该程序能够实时显示轴心轨迹,并进行频谱分析,也可以进行数据的存储。为了给轴心轨迹识别提供标准,进而编制了轴心轨迹仿真程序,对几种典型故障的轴心轨迹进行了仿真。根据不变矩理论,编制了不变矩计算程序,通过对传统算法的改进,实现了对离散数据的不变矩计算,改进算法能够自动识别轴心轨迹。通过连接实验台、测量装置和软件应用程序,对整个系统进行了整合,可实时显示轴心轨迹,同时计算不变矩。通过大量实验确定识别临界值,使程序既满足灵活性又满足准确性,有效实现在线自动识别。关键词:轴心轨迹;虚拟仪器;LabVIEW;不变矩Development of measurement and identifica
3、tion of axis orbit system on LabVIEWAbstractThe rotor axis path as a kind of important graphic sign of rotor vibration state contains a large number of fault information is used in the process of diagnosis expert in the diagnosis of an indispensable fault symptom information. Axis path due to the ef
4、fect of purification, the axis trajectory characteristics of the level of automatic extraction and automatic shape identification, directly affects the level of intelligent fault diagnosis expert system, So we need the axis trajectory comprehensive research.First set the rotor fault test-bed in the
5、laboratory bench to simulate some of the typical rotor faults, such as imbalance, in the wrong, rotor bending, etc. On this basis, the structures, signal measuring circuit, including the data acquisition card, sensor, charge amplifier and filter device, to measure the axis trajectory radial displace
6、ment of two directions.Second axis trajectory measurement program, the program can real-time display the axis trajectory, and spectrum analysis, can also for data storage. To provide standards for axis path identification, and then compiled the axis trajectory simulation program, the axis trajectory
7、 of several typical faults are simulated. The recognition system is used as a means for identifying, invariant moment invariant moment calculation program, therefore, according to the features of the experiment, the moment invariant algorithm was improved, in order to meet the automatic identificati
8、on.Finally integrate the compiled program can display the axis trajectory and moment invariant can be calculated, and through experiments to determine the identification of the critical value, satisfies program meets the flexibility and accuracy, effectively realize online automatic identification.K
9、ey words:Axis trajectory; Virtual instrument; LabVIEW; Invariant moments目录摘要IAbstractII第1章 绪论11.1 课题的背景11.2 国内外研究现状21.2.1 旋转机械轴心轨迹研究现状21.2.2 转子轴心轨迹自动识别研究现状21.3 研究的意义和主要内容41.3.1 研究的意义41.3.2 研究的主要内容4第2章 转子振动机理和轴心轨迹特征62.1 旋转机械振动机理分析62.2 转子振动的基本特征72.3 常见故障原因及轴心轨迹的特征82.3.1 转子不平衡82.3.2 转子不对中92.3.3 转子弯曲92.
10、3.4 转子碰磨102.3.5 油膜震荡112.4 轴心轨迹测试方法及信号分析122.5 本章小结14第3章 LabVIEW应用程序设计163.1 数据采集和轴心轨迹合成163.2 轴心轨迹仿真程序193.3 不变矩计算程序213.3.1 不变矩方法简介213.3.2 不变矩计算方法223.4 相似度计算程序243.5 轴心轨迹自动识别程序253.6 本章小结26第4章 实验系统与实验结果274.1 实验台的结构设计274.2 测量装置284.2.1 传感器与测量电路284.2.2 数据采集卡294.2.3 数据采集卡基本性能指标304.3 实验结果分析314.4 本章小结32结论33致谢34
11、参考文献35附录37- 58 -第1章 绪论1.1 课题的背景旋转机械是机械设备的重要组成部分并且占有相当大的比重,如机械、化工、电力、冶金等行业的机床、汽轮机、发电机、压缩机等都是典型的旋转机器,它们以转子及其他回转部件作为工作的主体,一旦发生事故将造成巨大损失。目前旋转机械向着大型、高速和自动化方向发展,为了保障设备运行安全可靠,对旋转机械的状态监测和故障诊断提出了更高的要求。旋转机械故障常在振动状况方面体现出来,因此对振动信号进行监测和诊断仍是目前的主要手段,经过多年的发展,旋转机械振动故障诊断已经形成比较完备的理论和技术体系。近年来,随着非线性理论的发展,尤其是信号处理和计算机智能理论
12、技术与故障诊断的融合渗透,使旋转机械故障诊断技术更加丰富成熟。目前,用于旋转机械故障诊断的征兆主要有时域、频域和幅值域等。由于以快速Fourier变换(FIT)为基础的数字信号处理技术在机械动力学中应用广泛,测试分析方法已经达到比较完善的程度,而且,旋转机械的振动信号在频域内的能量分布具有比较明显的特点,因此,目前旋转机械故障诊断仍以振动信号的频域特征作为主要的故障征兆,出现了功率谱估计法、时频分析法、全息谱角域分析、分形维数等一系列提取故障征兆的方法1。但是,在旋转机械故障诊断中,回转部件中心位置比振幅和幅频曲线等更能直观地反映转轴的运动情况,轴心轨迹作为转子振动信号的一类重要图形征兆,包含
13、了大量的故障信息,它能够形象、直观地表达了设备的运行情况。并且,轴心轨迹相较于时域、频域和幅值域响应更快,不需要人为的对振动信号进行分析,所以更容易实现在线监测和自动诊断。通常特定形状的轴心轨迹对应着特定的故障类型,能正确反映系统的振动故障,比如由转动部件不平衡或主轴轴线不直引起的摆度过大,轴心轨迹为椭圆形:动静件碰磨故障会使得轴心轨迹呈现为规则或不规则的花瓣形;由油膜涡动引起的轴心轨迹为内“8”字形;不对中引起的轴心轨迹为香蕉形或外“8”字形等2。另外,旋转机械的轴心轨迹的形状与动态特性,也是诊断专家在诊断过程中采用的一项不可缺少的故障征兆信息。因此,轴心轨迹作为旋转机械重要的一类图形征兆,
14、一直是研究的热点,在旋转机械故障诊断中得到广泛应用3。同时,由于轴心轨迹图形比较复杂,如何对轴心轨迹进行提纯和自动识别成为研究的重点。因此,本课题对于基于虚拟仪器的轴心轨迹测量与提纯和自动识别的研究就显得很有意义。1.2 国内外研究现状1.2.1 旋转机械轴心轨迹研究现状在转子轴承系统中,当作用在滑动轴承上的载荷的大小和方向都是随时间作周期性的变化时,由于其载荷是变化的,所以各个瞬时轴心的平衡位置也是变化的,在油膜力和载荷互相平衡的情况下,轴心都会逐渐纳入(即收敛于)一个确定的轨迹,就形成轴心轨迹。目前国际上存在两种较为典型的轴心轨迹的计算方法4,一种就是由德Karlsruhel大Han授提出
15、的称为汉氏法,一种由德国Claustlutl工业大学JHolland教授提出的称为荷氏法这两种方法都能够根据轴承载荷的变化情况,算出轴颈中心在轴承中的一系列平衡位置,经过若干次迭代计算,这一系列轴心平衡位置最终封闭为一条的曲线形成轴心轨迹曲线。汉氏法与荷氏法的最大区别在于如何求解雷诺方程,汉氏法对于雷诺方程的旋转项及挤压项采用统一的边界条件求解所以解法严密,荷氏法对雷诺方程的旋转项及挤压项并没按照统一的边界条件求解,它把旋转项及挤压项分开按照各自的边界条件求解方程,再把两者所求得的油膜反力进行合成,忽略了两者之间的互相影响。根据统计用荷氏法计算其计算结果比较接近实测结果,并且也适合对一些形状复
16、杂的轴承进行轴心轨迹求解。由于汉氏法计算过程相对复杂所以大量的计算过程中边界条件的选用简单地采用半Sommcrnd边界条件,这就造成其计算精度下降。这两种算法的原理基本相同,只是在求解雷诺方程时忽略的因素不同,边界条件假设也不同,最后结果也有差异。但是这两种算法都需经过大量计算,来近似的求出轴心轨迹,由于轴心轨迹形状比较复杂又有许多的噪声,所以计算出的轴心轨迹并不符合真实的情况。随着测试技术的不断发展,传感器技术的成熟,现在多用位移传感器测量转轴不同方向的径向位移,进而合成轴心轨迹。这种方法相比较于前两种算法,它更能反应轴心轨迹的真实情况并且响应快,近年来渐渐得到应用。1.2.2 转子轴心轨迹
17、自动识别研究现状转子轴心轨迹的识别一般的方法,通常是在转子某一截面两个相互垂直的方向上安装两个电涡流传感器,测得该方向的振动,然后合成轴心轨迹图形,然后在利用模式识别技术进行轴心轨迹形状的识别。转子轴心轨迹的识别实质是一个二维图形的模式识别问题,主要包括两部分内容:特征提取和特征分类。特征提取是对图形所包含的输入信息进行处理和分析,将不易受随机因素干扰的信息作为该图形的特征提取出来。特征分类过程是去除冗余信息的过程,具有提高识别精度、减少运算量和提高运算速度的作用。良好的特征应具有可区分性、稳定性和独立性。图像处理的形状分析主要是对区域作各种变换,提取区域的图形特征。轴心轨迹的特征提取主要方法
18、是对图形作各种变换,定义图形的不变性质5。常用的方法有:1)几何特征法:通过对轴心轨迹图形进行几何运算,使其具有规定的性质6。2)矩方法:以HU氏不变矩最为常用,有一定的应用局限,现有许多改进方法。3)编码方法:主要用于对输入神经网络的数据进行改进编码,提高网络的分辨率,涉及数据压缩技术。应用的方法有离散余弦变换法78,平面图形可变等长度压缩编码方法9,加权编码法10,小波神经网络数据压缩法11。这些方法可使降噪后的轴心轨迹图形编码得到较大的压缩,加快了网络的训练速度,使神经网络识别系统比传统的布尔编码方法有更高的准确率和稳定性。此类提取轴心轨迹的图像特征的方法是目前研究的热点,有许多相关文献
19、对此进行了论述。以上所述几种方法普遍存在针对性不强的问题,即只是应用了图像识别的基本原理,没有充分地将该原理与轴心轨迹所特有的图形特征结合起来分析,因此可以加强这方面的研究。在对轴心轨迹进行了图形特征的提取之后就可以进行识别了,这涉及到了一个合理的分类器的问题。识别的分类实际也是模式识别问题,即将所提取的特征按一定规则分为若干个模式,确定模式中心,将输入信号与己知的各个模式中心进行匹配,在根据一定的判定规则,确定输入信号应归入哪一个模式。具体方法主要包括概率统计方法、神经网络方法,关联度分析方法等。二维图形识别常采用基于统计特征的矩不变性进行自动识别。矩是一种线性特征,可以用来对区域进行描述,
20、而不变矩由于在尺度、平移和旋转等条件下的稳定性被广泛用于模式识别领域。HU在1962在文献12给出了连续函数矩的定义和关于矩的基本性质,证明了有关矩的平移的不变性、伸缩的不变性和旋转的不变性等性质,具体给出了具有平移、旋转和比例不比变性的七个不变矩的定义。但实验及理论分析都表明在离散情况下HU氏不变矩有一定的局限性13。,主要表现在HU氏不变矩在离散情况下不能保证对图形比例缩放的不变性。为此,许多研究者在通过大量试验后给出了一些改进算法,使之更符合轴心轨迹的特点,这也是本文研究的重点。现今,已经提出的各种方法以解决轴心轨迹的信息处理和自动识别,如武汉大学的动力机械学院就提出了用灰色理论关联度分
21、析和基于不变性矩的径向基函数方法来进行水轮机组的轴心轨迹自动识别1415。华中科技大学的王海则综合应用了小波去嗓理论、平面图形不变矩理论、神经网络理论,实现了识别过程的自动化,东南大学的赵林度利用神经网络对轴心轨迹的离散余弦变换的描述子进行分类识别16。浙江大学的丁昭同将广泛应用于语音识别的隐马尔科夫模型用于旋转机械的轴心轨迹的识别17,取得了一定的效果。1.3 研究的意义和主要内容1.3.1 研究的意义在工业生产当中,旋转机械是机械设备的重要组成部分,一旦发发生事故,将造成重大损失。随着科学技术的发展,人们对机械设备的安全、稳定、高可靠性工作的要求日益迫切。这就对旋转机械故障诊断技术提出了个
22、高的要求。旋转机械轴心轨迹作为旋转机械的一类重要图形征兆,包含了大量的故障信息,它形象、直观地表达了设备的运行情况,是诊断专家在诊断过程中采用的一项不可缺少的故障征兆信息,轴心轨迹的提纯与自动识别的研究水平决定着故障诊断专家系统的智能化水平,因此有着重要的研究价值。基于微机硬件平台的虚拟测量仪器已经在各行各业得到了越来越广泛的应用。它功能灵活、开放,易于与其他仪器设备组成强大的测量系统,比传统仪器效率更高、成本更低、功能更强大。将故障诊断技术基于虚拟仪器来实现,能够充分发挥虚拟仪器的上述特点,为旋转机械故障诊断技术,提供了有力的支持1.3.2 研究的主要内容本课题主要是研究轴心轨迹的自动识别和
23、旋转机械典型故障的在线诊断。搭建实验台和测试电路编制数据采集程序完成数据采集。应用不变矩理论,编程实现其算法实验轴心轨迹的识别。整合程序实现轴心轨迹自动识别和在线诊断。硬件方面:(1)设计搭建转子典型故障故障模拟实验台,使之能够可靠地模拟出各种典型故障;(2)搭建信号测量电路,保证传感器、电荷放大器、滤波器和数据采集卡能够正常工作。软件方面:(1)编制信号采集采集程序。该程序能够持续采样,对信号处理合成轴心轨迹并实施显示,也可以实现数据的存储和信号的频谱分析功能; (2)编制轴心轨迹仿真程序,该程序能够实现对几种典型故障轴心轨迹的仿真,并将数据保存;(3)编制不变矩计算程序,通过大量实验对不变
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 本科毕业 论文 基于 labview 转子 轴心 轨迹 测量 识别 系统 开发
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【胜****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【胜****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。