新人教版七年级下册第六章实数全章教案.doc
《新人教版七年级下册第六章实数全章教案.doc》由会员分享,可在线阅读,更多相关《新人教版七年级下册第六章实数全章教案.doc(35页珍藏版)》请在咨信网上搜索。
第六章 实数 6.1.1平方根 第一课时 【教学目标】 知识与技能: 通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示; 过程与方法: 通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。 情感态度与价值观: 通过学习算术平方根,认识数与人类生活的密切联系,建立初步的数感和符号感,发展抽象思维,为学生以后学习无理数做好准备。 教学重点:算术平方根的概念和求法。 教学难点:算术平方根的求法。 教具准备: 三块大小相等的正方形纸片;学生计算器。 教学方法: 自主探究、启发引导、小组合作 【教学过程】 一、情境引入: 问题:学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为的正方形画布,画上自己得意的作品参加比赛,这块正方形画布的边长应取多少? 二、探索归纳: 1.探索: 学生能根据已有的知识即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为。 接下来教师可以再深入地引导此问题: 如果正方形的面积分别是1、9、16、36、,那么正方形的边长分别是多少呢? 学生会求出边长分别是1、3、4、6、,接下来教师可以引导性地提问:上面的问题它们有共同点吗?它们的本质是什么呢?这个问题学生可能总结不出来,教师需加以引导。 上面的问题,实际上是已知一个正数的平方,求这个正数的问题。 2.归纳: ⑴算术平方根的概念: 一般地,如果一个正数x的平方等于a,即x2=a那么这个正数x叫做a的算术平方根。 ⑵算术平方根的表示方法: a的算术平方根记为,读作“根号a”或“二次很号a”,a叫做被开方数。 三、应用: 例1、 求下列各数的算术平方根: ⑴ ⑵ ⑶ ⑷ ⑸ 解:⑴因为所以的算术平方根是,即; ⑵因为,所以的算术平方根是,即; ⑶因为,所以的算术平方根是,即; ⑷因为,所以的算术平方根是,即; ⑸因为,所以的算术平方根是,即。 注:①根据算术平方根的定义解题,明确平方与开平方互为逆运算; ②求带分数的算术平方根,需要先把带分数化成假分数,然后根据定义去求解; ③0的算术平方根是0。 由此例题教师可以引导学生思考如下问题: 你能求出-1,-36,-100的算术平方根吗?任意一个负数有算术平方根吗? 归纳:一个正数的算术平方根有1个;0的算术平方根是0;负数没有算术平方根。 即:只有非负数有算术平方根,如果有意义,那么。 注:且这一点对于初学者不太容易理解,教师不要强求,可以在以后的教学中慢慢渗透。 例2、 求下列各式的值: (1) (2) (3) (4) 分析:此题本质还是求几个非负数的算术平方根。 解:(1) (2) (3) (4) 例3、 求下列各数的算术平方根: ⑴ ⑵ ⑶ ⑷ 解:(1)因为,所以; ⑵因为,所以; ⑶因为,所以; ⑷因为,所以。 根据学生的学习能力和理解能力可进行如下总结: 1、由,,可得 2、由,,可得 教师需强调时对两种情况都成立。 四、随堂练习: 1、算术平方根等于本身的数有_____。 2、求下列各式的值: , , , 3、求下列各数的算术平方根: , , , , 4、已知求的值。 五、课堂小结 1、这节课学习了什么呢? 2、算术平方根的具体意义是怎么样的? 3、怎样求一个正数的算术平方根? 六、布置作业 课本第75页习题13.1第1、2题 教学反思 本节课是本章的第一节课,主要是要建立算术平方根的概念为了使学生体会引入算术平方根的必要性,感受新数(无理数)的产生是实际生活和科学技术发展的需要,也为了激发学生的学习热情,所以章前图的学习不要省略.能使学生理解引人算术平方根符号的必要性,明确有些正数的算术平方根不能容易地求得,为下节课的学习做准备. 6.1.2平方根 第2课时 【教学目标】 知识与技能: 会用计算器求算术平方根;了解无限不循环小数的特点;会用算术平方根的知识解决实际问题。 过程与方法: 通过折纸认识第一个无理数,并通过估计它的大小认识无限不循环小数的特点。用计算器计算算术平方根,使学生了解利用计算器可以求出任意一个正数的算术平方根,再通过一些特殊的例子找出一些数的算术平方根的规律,最后让学生感受算术平方根在实际生活中的应用。 情感态度与价值观: 通过探究的大小,培养学生的估算意识,了解两个方向无限逼近的数学思想,并且锻炼学生克服困难的意志,建立自信心,提高学习热情。 教学重点: ①认识无限不循环小数的特点,会估算一些数的算术平方根。 ②会用算术平方根的知识解决实际问题。 教学难点: 认识无限不循环小数的特点,会估算一些数的算术平方根。 教学方法: 自主探究、启发引导、小组合作 教学过程: 一、通过实验引入: 怎样用两个面积为1的小正方形拼成一个面积为2的大正方形? 如图,把两个小正方形沿对角线剪开,将所得的4个直角三角形拼在一起,就得到一个面积为2的大正方形。你知道这个大正方形的边长是多少吗? 设大正方形的边长为,则,由算术平方根的意义可知, 所以大正方形的边长为。 二、讨论的大小: 由上面的实验我们认识了,它的大小是多少呢?它所表示的数有什么特征呢?下面我们讨论的大小。 因为<<,所以<<. 因为,,所以<<。 因为,,所以<< 因为,,所以<< …… 如此进行下去,我们发现它的小数位数无限,且小数部分不循环,像这样的数我们成为无限不循环小数。=…… 注:这种估算体现了两个方向向中间无限逼近的数学思想,学生第一次接触,不好理解,教师在讲解时速度要放慢,可能需要讲两遍。=……,是个无限不循环小数,但是很抽象,没有办法全部表示出来它的大小,类似这样的数还有很多,比如等,圆周率π也是一个无限不循环小数。 三、用计算器求算术平方根: 大多数计算器都有“”键,用它可以求出一个有理数的算术平方根或近似值。 例1、 用计算器求下列各式的值: ; (精确到 解:(1)依次按键,显示:56.所以 (2)依次按键2=,显示:,这是一个近似值。所以 注:不同品牌的计算器,按键的顺序可能有所不同。 四、探索规律: (1)利用计算器计算,并将计算结果填在表中,你发现了什么规律? … … … … (2)用计算器计算(结果保留4个有效数字),并利用你发现的规律写出, ,的近似值。你能根据的值求出的值吗? 学生通过计算器可求出(1)的答案,依次是:。从运算结果可以发现,被开方数扩大或缩小100倍时,它的算术平方根就扩大或缩小10倍。 由可得,由的值不能求出的值,因为规律是被开方数扩大或缩小100倍时,它的算术平方根才扩大或缩小10倍,而3到30扩大的是10倍,所以不能由此规律求出。 此题学生可独立完成。 五、实际应用: 例1、小丽想用一块面积为的正方形纸片,沿着边的方向裁出一块面积为 的长方形纸片,使它的长与宽之比为:,不知道能否裁出来,正在发愁,小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片。”你同意小明的说法吗?小丽能否用这块纸片裁出符合要求的纸片吗? 分析:学生一般认为一定能用一块面积大的纸片裁出一块面积小的纸片。通过计算和讲解纠正这种错误的认识。 解:设长方形纸片的长为,宽为。 根据边长与面积的关系可得:,,, ∴长方形纸片的长为。因为﹥,所以﹥,从而﹥ 即长方形纸片的长应该大于,而已知正方形纸片的边长只有,这样长方形纸片的长将大于正方形纸片的边长。 答:不能同意小明的说法。小丽不能用这块正方形纸片裁出符合要求的长方形纸片。 六、随堂练习: 1.用计算器求下列各式的值: (1) (2) (3) (精确到) 2、估计大小: (1)与 (2)与 3、已知,求,,,的值。 七、课堂小结 1、被开方数增大或缩小时,其相应的算术平方根也相应地增大或缩小,因此我们可以利用夹值的方法来求出算术平方根的近似值; 2、利用计算器可以求出任意正数的算术平方根的近似值; 3、被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律是怎样的呢? 4、怎样的数是无限不循环小数? 八、布置作业 课本第75页习题13.1第3、5题 教学反思: 本节课首先提出“有多大”的问题,这是一个学生关注的具有挑战性的问题,也是说明引入算术平方根必要性的好问题(如果算术平方根都可以像完全平方数的算术平方根那样求得,恐怕就没有必要花那么多的精力来学习算术平方根了),所以教学中要引起重视.解决这个问题的过程体现了“数学中的无限逼近的思想”并使学生体验“无限不循环”小数的特点(学生对无限的体会没有障碍,但对不循环会因计算实际的局限无法体会,是本节课的一个疑点,教师可适当说明,不要深究). 6.1.3平方根 第三课时 【教学目标】 知识与技能 了解平方根的概念,会用根号表示正数的平方根; 了解开平方与平方互为逆运算,会用平方运算求某些非负数的平方根 过程与方法 通过学习平方根,进一步建立数感和符号感,发展抽象思维。通过对正数平方根特点的探究,了解平方根与算术平方根的区别和联系,体验类比、化归等问题解决数学思想方法的运用,提高学生对问题的迁移能力。 情感、态度与价值观 通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的。通过探究活动培养动手能力和锻炼克服困难的意志,建立自信心,提高学习热情。 教学重点: 了解开方和乘方互为逆运算,弄懂平方根与算术平方根的区别和联系。 教学难点:平方根与算术平方根的区别和联系。 教学方法: 自主探究、启发引导、小组合作 教学过程 一、情境导入 如果一个数的平方等于9,这个数是多少? 讨论:这样的数有两个,它们是3和-3.注意中括号的作用. 又如:,则x等于多少呢? 二、探索归纳: 1、平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果=a,那么x叫做a的平方根. 求一个数的平方根的运算,叫做开平方. 例如:3的平方等于9,9的平方根是3,所以平方与开平方互为逆运算. 2、观察:课本P73的图14.1-2. 图14.1-2中的两个图描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质.并根据这个关系说出1,4,9的平方根. 例4 求下列各数的平方根。 (1) 100 (2) (3) 0.25 3、按照平方根的概念,请同学们思考并讨论下列问题: 正数的平方根有什么特点?0的平方根是多少?负数有平方根吗? 一个是正数有两个平方根,即正数进行开平方运算有两个结果,一个是负数没有平方根,即负数不能进行开平方运算,符号:正数a的算术平方根可用表示;正数a的负的平方根可用-表示. 例5 求下列各式的值。 (1), (2)-, (3) (4), 归纳:平方根和算术平方根两者既有区别又有联系.区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。 三、练习 课本P75 小练习1、2、3 四、小结: 1、什么叫做一个数的平方根? 2、正数、0、负数的平方根有什么规律? 3、怎样求出一个数的平方根?数a的平方怎样表示? 五、作业 P75-76习题13.1第4、7、8题。 教学反思 本课主要是在算术平方根的基础上建立平方根的概念,要以等式x2=a和已有算术平方根概念为基础,并使学生明确平方根与算术平方根之间的联系与区别,把握了这些平方根的有关概念,正数、零、负数的平方根的规律也就不难掌握了. 6.2 立方根 【教学目标】 知识与技能: ① 了解立方根的概念和表示方法,并会求一个数的立方根; ② 会用计算器求一个数的立方根。 过程与方法: 从具体的计算出发归纳出立方根的概念,然后讨论立方与开立方的关系,研究立方根的特征,最后介绍实用计算器求立方根的方法。 情感态度与价值观: 通过探索立方根的特征,培养学生独立思考和小组交流的能力;通过立方根与平方根的比较使学生学会类比学习的数学思想;通过探讨一个数的立方根与它的相反数的立方根的关系,可以将求负数的立方根转化为求正数的立方根的问题,培养学生的转化思想。 教学重点:立方根的概念和求法 教学难点:立方根的求法。 教学过程: 一、情景引入: 要制作一种容积为的正方体形状的包装箱,这种包装箱的边长应该是多少? 二、探索归纳: 1.探索:设这种包装箱的边长为,则, 这就是要求一个数,使它的立方等于27. 因为 ,所以 ,即这种包装箱的边长应为。 2.归纳: ① 立方根的概念: 一般地,如果一个数的立方等于,那么这个数叫做的立方根或三次方根。 ② 立方根的表示方法: 如果,那么叫做的立方根。记作,读作三次根号。 其中是被开方数,3是根指数,中的根指数3不能省略。 ③ 开立方的概念: 求一个数的立方根的运算,叫做开立方。开立方与立方互为逆运算,可以根据这种关系求一个数的立方根。 3、探索立方根的特点: 根据立方根的意义填空,思考正数、0、负数的立方根各有什么特点? (1)因为 ,所以8的立方根是( ); (2)因为 ,所以的立方根是( ) ; (3)因为 ,所以0的立方根是( ); (4)因为 ,所以 的立方根是( ); (5)因为 ,所以的立方根是( )。 学生独立完成后,教师要引导学生从正、负数和零三方面去归纳总结立方根的特点。 归纳:正数的立方根是正数;负数的立方根是负数;0的立方根是0. 4.探究互为相反数的两个数的立方根的关系: 填空:因为___,___,所以___; 因为___,___,所以___ 由上面两个例子可归纳出:一般地,。 注:这个关系对于正数、负数、零都成立。求负数的立方根时,可以先求出这个负数的 绝对值的立方根,然后再确它的相反数。 三、应用: 例1、 求下列各式的值: (1) (2) (3) 分析:根据立方根的意义求解。 解:(1) (2) (3) 例2、 求下列各式中的值: (1) (2) (3) 分析:此题的本质还是求立方根。 解:(1)∵ ∴ ∴ (2)∵ ∴ ∴ (3)∵ ∴ ∴ 例3、用计算器计算,,,,的值,你发现了什么?并总结出来。利用你前面发现的规律填空:已知,则____,____。 分析:在用计算器求立方根时按键顺序是:、被开立方的数字、=, 这样即可显示出计算结果 解:,,,, 由此发现:一个数扩大或缩小1000倍时,它的立方根扩大或缩小10倍。 ,。 四、随堂练习: 1、 立方根等于本身的数是___,如果则___。 2、的立方根是____,的立方根是____。 3、已知的立方根是4,求的算术平方根。 4、已知,求的值。 5、比较大小:(1)__,(2)__,(3)3__ 五、课堂小结 1.立方根和开立方的定义. 2.正数、0、负数的立方根的特征. 3.立方根与平方根的异同. 六、布置作业 课本第172页习题10.2第1、3、5、6题; 教学反思: 我将本节课定位为探究式教学活动,通过对教材进行适当的整合,让学生带着原有的知识背景、生活体验和理解走进学习活动,并通过自己的主动探索,与同学交流、反思等,构建对知识的形成和运用。突出以学生的“数学活动”为主线,激发学生学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流过程中真正理解和掌握基本的数学知识与技能、数学思想与方法,获得广泛的数学活动经验。这样的安排符合掌握知识与发展思维、能力相统一的原则、教师的主导作用与学生的主体作用相结合的原则。 6.3.1实数 第一课时 【教学目标】 知识与技能: ① 了解无理数和实数的概念以及实数的分类; ② 知道实数与数轴上的点具有一一对应的关系。 过程与方法: 在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩充到实数的范围,从而总结出实数的分类,接着把无理数在数轴上表示出来,从而得到实数与数轴上的点是一一对应的关系。 情感态度与价值观: ① 通过了解数系扩充体会数系扩充对人类发展的作用; ② 敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题。 教学重点: ① 了解无理数和实数的概念; ② 对实数进行分类。 教学难点:对无理数的认识。 【教学过程】 一、复习引入无理数: 利用计算器把下列有理数写成小数的形式,它们有什么特征? 发现上面的有理数都可以写成有限小数或无限循环小数的形式 即: 归纳:任何一个有理数(整数或分数)都可以写成有限小数或者无限循环小数的形式, 反过来,任何有限小数或者无限循环小数也都是有理数。 通过前面的学习,我们知道有很多数的平方根或立方根都是无限不循环小数, 把无限不循环小数叫做无理数。 比如等都是无理数。…也是无理数。 二、实数及其分类: 1、实数的概念:有理数和无理数统称为实数。 2、实数的分类: 按照定义分类如下: 实数 按照正负分类如下: 实数 3、实数与数轴上点的关系: 我们知道每个有理数都可以用数轴上的点来表示。物理是合乎是否也可以用数轴上的点表示出来吗? 活动1:直径为1个单位长度的圆其周长为π,把这个圆放在数轴上,圆从原点沿数轴向右滚动一周,圆上的一点由原点到达另一个点,这个点的坐标就是π,由此我们把无理数π用数轴上的点表示了出来。 活动2:在数轴上,以一个单位长度为边长画一个正方形,则其对角线的长度就是以原点为圆心,正方形的对角线为半径画弧,与正半轴的交点就表示,与负半轴的交点就是。事实上通过这种做法,我们可以把每一个无理数都在数轴上表示出来,即数轴上有些点表示无理数。 归纳:①实数与数轴上的点是一一对应的。即没一个实数都可以用数轴上的点来表示; 反过来,数轴上的每一个点都表示一个实数。 ②对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大。 三、应用: 例1、下列实数中,无理数有哪些? ,,,,,,,π,。 解:无理数有:,,π 注:①带根号的数不一定是无理数,比如,它其实是有理数4; ②无限小数不一定是无理数,无限不循环小数一定是无理数。 比如。 例2、把无理数在数轴上表示出来。 O A C B 分析:类比的表示方法,我们需要构造出长度为的线段,从而以它为半径画弧,与数轴正半轴的交点就表示。 解:如图所示, 由勾股定理可知:,以原点为圆心,以长度为半径画弧, 与数轴的正半轴交于点,则点就表示。 四、随堂练习: 1、判断下列说法是否正确: ⑴无限小数都是无理数; ⑵无理数都是无限小数; ⑶带根号的数都是无理数; ⑷所有的有理数都可以用数轴上的点来表示,反过来,数轴上所有的点都表示有理数; ⑸所有实数都可以用数轴上的点来表示,反过来,数轴上的所有的点都表示实数。 2、把下列各数分别填在相应的集合里: ,,,,,,,,。 … … 有理数集合 无理数集合 3、比较下列各组实数的大小: (1), (2)π, (3) (4) 五、课堂小结 1、无理数、实数的意义及实数的分类. 2、实数与数轴的对应关系 . 六、布置作业 P86-87习题13.3第1、2、3题; 教学反思: 关于无理数的认识是非常抽象的,只要求学生了解无理数和实数的意义即可,学生对实数的认识是逐步加深的,以后还要讨论,所以本节课不易过难,教师要把握好难度。 6.3.2 实数 第二课时 【教学目标】 知识与技能: ① 掌握实数的相反数和绝对值; ② 掌握实数的运算律和运算性质. 过程与方法: 通过复习有理数的相反数、绝对值、运算律、运算性质,引出实数的相反数、绝对值、运算律、运算性质,并通过例题和练习题加以巩固,适当加深对它们的认识。 情感态度与价值观: 通过建立有理数的一些概念和运算在实数范围里也成立的意识,让学生了解在这种数的扩充中所体现的一致性,让学生充分感受数的不断发展。 教学重点: ① 会求实数的相反数和绝对值; ② 会进行实数的加减法运算; ③ 会进行实数的近似计算。 教学难点: 认识和理解有理数的一些概念和运算在实数中仍适用的这种扩充。 【教学过程】 一、复习引入:有理数的一些概念和运算性质运算律: 1、相反数:有理数的相反数是。 2、绝对值:当≥0时,,当≤0时,。 3、运算律和运算性质:有理数之间可以进行加、减、乘、除(除数不为0)、乘方、非负数的开平方、任意数的开立方运算,有理数的运算中还有交换律、结合律、分配律。 二、实数的运算: 1.实数的相反数:数的相反数是。 2.一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0. 3、实数之间可以进行加、减、乘、除(除数不为0)、乘方、非负实数的开方运算,还有任意实数的开立方运算,在进行实数的运算中,交换律、结合律、分配律等运算性质也适用。 三、应用: 例1、(1)求的绝对值和相反数; (2)已知一个数的绝对值是,求这个数。 解:(1)因为,所以, (2)因为,所以绝对值为的数是或。 例2、计算下列各式的值: (1); (2)。 分析:运用加法的结合律和分配律。 解:(1); (2) 例3、计算: (1) (精确到) (2) (结果保留3个有效数字) 解:(1); (2)。 四、随堂练习: 1、计算: (1); (2); (3); (4)。 2、计算: (1)(精确到0.01); (2) (精确到十分位)。 3、在平面内有四个点,它们的坐标分别是。 (1)依次连接,围成的四边形是一个什么图形? (2)求这个四边形的面积。 (3)将这个四边形向下平移个单位长度,四个顶点的坐标变为多少? 五、课堂小结 1、实数的运算法则及运算律。 2、实数的相反数和绝对值的意义 六、布置作业 课本P87习题14.3第4、5、6、7题; 教学反思: 当数的范围由有理数扩充到实数后有理数的概念和运算(包括运算律和运算性质)在实数范围内仍然成立。教学时要注意突出这种早数的扩充中体现出来的一致性;同时,教学中也要注意,随着数的范围的不断扩大,在扩大的数的范围内可以解决更多的问题,这一点在以后的教学中会更加充分的体现。 本章复习 本章的知识网络结构: 知识梳理 一.数的开方主要知识点: 【1】平方根: 1.如果一个数x的平方等于a,那么,这个数x就叫做a的平方根;也即,当时,我们称x是a的平方根,记做:。因此: 2.当a=0时,它的平方根只有一个,也就是0本身; 3.当a>0时,也就是a为正数时,它有两个平方根,且它们是互为相反数,通常记做:。 当a<0时,也即a为负数时,它不存在平方根。 例1. (1) 的平方是64,所以64的平方根是 ; (2) 的平方根是它本身。 (3)若的平方根是±2,则x= ;的平方根是 (4)当x 时,有意义。 (5)一个正数的平方根分别是m和m-4,则m的值是多少?这个正数是多少? 【算术平方根】: 1.如果一个正数x的平方等于a,即,那么,这个正数x就叫做a的算术平方根,记为:“”,读作,“根号a”,其中,a称为被开方数。特别规定:0的算术平方根仍然为0。 2.算术平方根的性质:具有双重非负性,即:。 3.算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。因此,算术平方根只有一个值,并且是非负数,它只表示为:;而平方根具有两个互为相反数的值,表示为:。 例2. (1)下列说法正确的是 ( ) A.1的立方根是B.C.的平方根是D.0没有平方根; (2)下列各式正确的是( ) A. B. C. D. (3)的算术平方根是 。 (4)若有意义,则___________。 (5)已知△ABC的三边分别是且满足,求c的取值范围。 (6)已知:A=是的算术平方根,B=是的立方根。求A-B的平方根。 (7)(提高题)如果x、y分别是4-的整数部分和小数部分。求x-y的值. 【立方根】 1.如果x的立方等于a,那么,就称x是a的立方根,或者三次方根。记做:,读作,3次根号a。注意:这里的3表示的是开根的次数。一般的,平方根可以省写根的次数,但是,当根的次数在两次以上的时候,则不能省略。 2.平方根与立方根:每个数都有立方根,并且一个数只有一个立方根;但是,并不是每个数都有平方根,只有非负数才能有平方根。 例3. (1)64的立方根是 (2)若,则b等于( ) A. 1000000 B. 1000 C. 10 D. 10000 (3)下列说法中:①都是27的立方根,②,③的立方根是2,④。 其中正确的有 ( ) A、1个 B、2个 C、3个 D、4个 【无理数】 1.无限不循环小数的小数叫做无理数;它必须满足“无限”以及“不循环”这两个条件。在初中阶段,无理数的表现形式主要包含下列几种:(1)特殊意义的数,如:圆周率以及含有的一些数,如:2-,3等;(2)开方开不尽的数,如:等;(3)特殊结构的数:如:2.010 010 001 000 01…(两个1之间依次多1个0)等。应当要注意的是:带根号的数不一定是无理数,如:等;无理数也不一定带根号,如: 2. 有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。 例4.(1)下列各数:①3.141、②0.33333……、③、④π、⑤、⑥、⑦0.3030003000003……(相邻两个3之间0的个数逐次增加2)、其中是有理数的有_______;是无理数的有_______。(填序号) (2)有五个数:0.125125…,0.1010010001…,-,,其中无理数有 ( )个 A 2 B 3 C 4 D 5 【实数】 1.有理数与无理数统称为实数。在实数中,没有最大的实数,也没有最小的实数;绝对值最小的实数是0,最大的负整数是-1。 2.实数的性质:实数a的相反数是-a;实数a的倒数是(a≠0);实数a的绝对值|a|=,它的几何意义是:在数轴上的点到原点的距离。 3.实数的大小比较法则:实数的大小比较的法则跟有理数的大小比较法则相同:即正数大于0,0大于负数;正数大于负数;两个正数,绝对值大的就大,两个负数,绝对值大的反而小。(在数轴上,右边的数总是大于左边的数)。对于一些带根号的无理数,我们可以通过比较它们的平方或者立方的大小。 4.实数的运算:在实数范围内,可以进行加、减、乘、除、乘方、开方六种运算。运算法则和运算顺序与有理数的一致。 例5. (1)下列说法正确的是( ); A、任何有理数均可用分数形式表示 ; B、数轴上的点与有理数一一对应 ; C、1和2之间的无理数只有 ; D、不带根号的数都是有理数。 (2)a,b在数轴上的位置如图所示,则下列各式有意义的是( ) b 0 a A、 B、 C、 D、 (3)比较大小(填“>”或“<”). 3 , , , , (4)数 的大小关系是 ( ) A. B. C. D. (5)将下列各数:,用“<”连接起来;______________________________________。 (6)若,且,则:= 。 (7)计算: (8)已知:,求代数式的值。 6.(提高题)观察下列等式:回答问题: ① ② ③,…… (1)根据上面三个等式的信息,请猜想的结果; (2)请按照上式反应的规律,试写出用n表示的等式,并加以验证。 课后练习 一、考查题型: 1. -1的相反数的倒数是 2. 已知|a+3|+=0,则实数(a+b)的相反数 3. 数-3.14与-Л的大小关系是 4. 和数轴上的点成一一对应关系的是 5. 和数轴上表示数-3的点A距离等于2.5的B所表示的数是 6. 在实数中Л,-,0, ,-3.14, 无理数有( ) (A)1 个 (B)2个 (C)3个 (D)4个 7.一个数的绝对值等于这个数的相反数,这样的数是( ) (A)非负数 (B)非正数 (C)负数 (D)正数 8.若x<-3,则|x+3|等于( ) (A)x+3 (B)-x-3 (C)-x+3 (D)x-3 9.下列说法正确是( ) (A) 有理数都是实数 (B)实数都是有理数 (B) 带根号的数都是无理数 (D)无理数都是开方开不尽的数 10.实数在数轴上的对应点的位置如图,比较下列每组数的大小: (1) c-b和d-a (2) bc和ad 二、考点训练: *1.判断题: (1)如果a为实数,那么-a一定是负数;( ) (2)对于任何实数a与b,|a-b|=|b-a|恒成立;( ) (3)两个无理数之和一定是无理数;( ) (4)两个无理数之积不一定是无理数;( ) (5)任何有理数都有倒数;( ) (6)最小的负数是-1;( ) (7)a的相反数的绝对值是它本身;( ) (8)若|a|=2,|b|=3且ab>0,则a-b=-1;( ) 2.把下列各数分别填入相应的集合里 -|-3|,21.3,-1.234,-,0,-,-, -,, (-)0,3-2,ctg45°,1.2121121112......中 无理数集合{ }负分数集合{ } 整数集合{ } 非负数集合{ } *3.已知1<x<2,则|x-3|+等于( ) (A)-2x (B)2 (C)2x (D)-2 4.下列各数中,哪些互为相反数?哪些互为倒数?哪些互为负倒数? -3, -1, 3, - 0.3, 3-1, 1 +, 3 互为相反数: 互为倒数: 互为负倒数: *5.已知x、y是实数,且(x-)2和|y+2|互为相反数,求x,y的值 6.a,b互为相反数,c,d互为倒数,m的绝对值是2, 求+4m-3cd= 。 *7.已知=0,求a+b= 。 三、解题指导: 1.下列语句正确的是( ) (A)无尽小数都是无理数 (B)无理数都是无尽小数 (C)带拫号的数都是无理数 (D)不带拫号的数一定不是无理数。 2.和数轴上的点一一对应的数是( ) (A)整数 (B)有理数 (C)无理数 (D)实数 3.零是( ) (A) 最小的有理数 (B)绝对值最小的实数 (C)最小的自然数 (D)最小的整数 4.如果a是实数,下列四种说法: (1)a2和|a|都是正数,(2)|a|=-a,那么a一定是负数, (3)a的倒数是,(4)a和-a的两个分别在原点的两侧,几个是正确的( ) (A)0 (B)1 (C)2 (D)3 *5.比较下列各组数的大小: (1) (2) (3)a<b<0时, 6.若a,b满足=0,则的值是 *7.实数a,b,c在数轴上的对应点如图,其中O是原点,且|a|=|c| (1) 判定a+b,a+c,c-b的符号 (2) 化简|a|-|a+b|+|a+c|+|c-b| *8.数轴上点A表示数-1,若AB=3,则点B所表示的数为 9.已知x<0,y>0,且y<|x|,用"<"连结x,-x,-|y|,y。 10.最大负整数、最小的正整数、最小的自然数、绝对值最小的实数各是什么? 11.绝对值、相反数、倒数、平方数、算术平方根、立方根是它本身的数各是什么? 12.把下列语句译成式子: (1)a是负数 ;(2)a、b两数异号 ;(3)a、b互为相反数 ; (4)a、b互为倒数 ;(5)x与y的平方和是非负数 ; (6)c、d两数中至少有一个为零 ;(7)a、b两数均不为0 。 *13.数轴上作出表示,,-的点。 四.独立训练: 1.0的相反数是 ,3-л的相反数是 , 的相反数是 ;-л的绝对值是 ,0 的绝对值是 ,-的倒数是 2.数轴上表示-3.2的点它离开原点的距离是 。 A表示的数是-,且AB=,则点B表示的数是 。 3 -,л,(1-)º,-,0.1313…,-3-1 ,1.101001000… (两1之间依次多一个0),中无理数有 ,整数有 ,负数有 。 4. 若a的相反数是27,则|a|= ;5.若|a|=,则a= 5.若实数x,y满足等式(x+3)2+|4-y|=0,则x+y的值是 6.实数可分为( ) (A)正数和零(B)有理数和无理数(C)负数和零 (D)正数和负数 *7.若2a与1-a互为相反数,则a等于( ) (A)1 (B)-1 (C) (D) 8.当a为实数时,=-a在数轴上对应的点在( ) (A)原点右侧(B)原点左侧(C)原点或原点的右侧(D)原点或原点左侧 *9.代数式++的所有可能的值有( ) (A)2个 (B)3个 (C)4个 (D)无数个 10.已知实数a、b在数轴上对应点的位置如图 (1)比较a-b与a+b的大小 (2)化简|b-a|+|a+b| 11.实数a、b、c在数轴上的对应点如图所示,其中|a|=|c| 试化简:|b-c|-|b-a|+|a-c-2b|-|c-a| *12.已知等腰三角形一边长为a,一边长b,且(2a-b)2+|9-a2|=0 。求它的周长。 *13.若3,m,- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 教版七 年级 下册 第六 实数 教案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文