人教版九年级数学上册圆知识点归纳及练习(含答案).doc
《人教版九年级数学上册圆知识点归纳及练习(含答案).doc》由会员分享,可在线阅读,更多相关《人教版九年级数学上册圆知识点归纳及练习(含答案).doc(10页珍藏版)》请在咨信网上搜索。
______________________________________________________________________________________________________________ 圆 24.1.1 圆 知识点一 圆的定义 圆的定义:第一种:在一个平面内,线段 OA 绕它固定的一个端点 O 旋转一周,另一个端点 A 所形成的图形叫作圆。固定的端点 O 叫作圆心,线段 OA 叫作半径。第二种:圆心为 O,半径为 r 的圆可以看成是所有到定点 O 的距离等于定长 r 的点的集合。 比较圆的两种定义可知:第一种定义是圆的形成进行描述的,第二种是运用集合的观点下的定义,但是都说明确定了定点与定长,也就确定了圆。 知识点二 圆的相关概念 (1) 弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫作直径。 (2) 弧:圆上任意两点间的部分叫做圆弧,简称弧。圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。(3) 等圆:等够重合的两个圆叫做等圆。 (4) 等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。 弦是线段,弧是曲线,判断等弧首要的条件是在同圆或等圆中,只有在同圆或等圆中完全重合的弧才是等弧,而不是长度相等的弧。 24.1.2 垂直于弦的直径 知识点一 圆的对称性 圆是轴对称图形,任何一条直径所在直线都是它的对称轴。知识点二 垂径定理 (1)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。如图所示,直径为 CD,AB 是弦,且 CD⊥AB, C M AM=BM A B 垂足为 M AC =BC AD=BD D 垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧如上图所示,直径 CD 与非直径弦 AB 相交于点 M, CD⊥AB AM=BM AC=BC AD=BD 注意:因为圆的两条直径必须互相平分,所以垂径定理的推论中,被平分的弦必须不是直径,否则结论不成立。 24.1.3 弧、弦、圆心角 知识点 弦、弧、圆心角的关系(1) 弦、弧、圆心角之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。 (2) 在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余的各组量也相等。 (3) 注意不能忽略同圆或等圆这个前提条件,如果丢掉这个条件,即使圆心角相等,所对的弧、弦也不一定相等,比如两个同心圆中,两个圆心角相同,但此时弧、弦不一定相等。 24.1.4 圆周角 知识点一 圆周角定理 (1) 圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。 (2) 圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对弦是直径。 (3) 圆周角定理揭示了同弧或等弧所对的圆周角与圆心角的大小关系。“同弧或等弧”是不能改为“同弦或等弦”的,否则就不成立了,因为一条弦所对的圆周角有两类。 知识点二 圆内接四边形及其性质 圆内接多边形:如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆。圆内接四边形的性质:圆内接四边形的对角互补。 24.2 点、直线、圆和圆的位置关系 24.2.1 点和圆的位置关系 知识点一 点与圆的位置关系 (1) 点与圆的位置关系有:点在圆外,点在圆上,点在圆内三种。 (2) 用数量关系表示:若设⊙O 的半径是 r,点 P 到圆的距离 OP=d,则有: 点 P 在圆外 d>r;点 p 在圆上 d=r;点 p 在圆内 d<r。 知识点二 过已知点作圆(1) 经过一个点的圆(如点 A) 以点 A 外的任意一点(如点 O)为圆心,以 OA 为半径作圆即可,如图,这样的圆可以作无数个。 ·O1 A ·O2 ·O3 (2) 经过两点的圆(如点 A、B) 以线段 AB 的垂直平分线上的任意一点(如点 O)为圆心,以 OA(或 OB)为半径作圆即可,如图,这样的圆可以作无数个。 A B (3) 经过三点的圆 ① 经过在同一条直线上的三个点不能作圆 ② 不在同一条直线上的三个点确定一个圆,即经过不在同一条直线上的三个点可以作圆,且只能作一个圆。如经过不在同一条直线上的三个点 A、B、C 作圆,作法:连接 AB、BC(或 AB、AC 或 BC、AC)并作它们的垂直平分线,两条垂直平分线相交于点 O,以点 O 为圆心,以 OA(或 OB、OC)的长为半径作圆即可,如图,这样的圆只能作一个。 ③ A O B C 知识点三 三角形的外接圆与外心(1) 经过三角形三个顶点可以作一个圆,这个圆叫做三角形的外接圆。 (2) 外接圆的圆心是三角形三条边的垂直平分线的交点,叫做这个三角形的外心。知识点四 反证法 (1) 反证法:假设命题的结论不成立,经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立,这种证明命题的方 法叫做反证法。 (2) 反证法的一般步骤: ① 假设命题的结论不成立; ② 从假设出发,经过逻辑推理,推出或与定义,或与公理,或与定理,或与已知等相矛盾的结论; ③ 由矛盾判定假设不正确,从而得出原命题正确。 24.2.2 直线和圆的位置关系 知识点一 直线与圆的位置关系 (1) 直线与圆的位置关系有:相交、相切、相离三种。 (2) 直线与圆的位置关系可以用数量关系表示 若设⊙O 的半径是 r,直线 l 与圆心 0 的距离为 d,则有: 直线 l 和⊙O 相交d < r; 直线 l 和⊙O 相切d = r; 直线 l 和⊙O 相离d > r。 知识点二 切线的判定和性质 (1) 切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。 (2) 切线的性质定理:圆的切线垂直于过切点的半径。 (3) 切线的其他性质:切线与圆只有一个公共点;切线到圆心的距离等于半径;经过圆心且垂直于切线的直线必过切点;必过切点 且垂直于切线的直线必经过圆心。 知识点三 切线长定理 (1) 切线长的定义:经过园外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长。 (2) 切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。 (3) 注意:切线和切线长是两个完全不同的概念,必须弄清楚切线是直线,是不能度量的;切线长是一条线段的长,这条线段的两 个端点一个是在圆外一点,另一个是切点。 知识点四 三角形的内切圆和内心 (1) 三角形的内切圆定义:与三角形各边都相切的圆叫做三角形的内切圆。这个三角形叫做圆的外切三角形。 (2) 三角形的内心:三角形内切圆的圆心叫做三角形的内心。 (3) 注意:三角形的内心是三角形三条角平分线的交点,所以当三角形的内心已知时,过三角形的顶点和内心的射线,必平分三角形的内角。 24.2.3 圆和圆的位置关系 知识点一 圆与圆的位置关系(1) 圆与圆的位置关系有五种: ① 如果两个圆没有公共点,就说这两个圆相离,包括外离和内含两种; ② 如果两个圆只有一个公共点,就说这两个圆相切,包括内切和外切两种; ③ 如果两个圆有两个公共点,就说这两个圆相交。 (2) 圆与圆的位置关系可以用数量关系来表示: 若设两圆圆心之间的距离为 d,两圆的半径分别是 r1 r2,且 r1 < r2,则有 两圆外离 d>r1+r2 两圆外切 d=r1+r2 两圆相交 2-r1<d<r1+r2 两圆内切 d=r2-r1 两圆内含 d<r2-r1 24.3 正多边形和圆 知识点一 正多边形的外接圆和圆的内接正多边形 正多边形与圆的关系非常密切,把圆分成 n(n 是大于 2 的自然数)等份,顺次连接各分点所得的多边形是这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。 正多边形的中心:一个正多边形的外接圆的圆心叫做这个正多边形的中心。正多边形的半径:外接圆的半径叫做正多边形的半径。 正多边形的中心角:正多边形每一条边所对的圆心角叫做正多边形的中心角。正多边形的边心距:中心到正多边形一边的距离叫做正多边形的边心距。 知识点二 正多边形的性质 (1) 正 n 边形的半径和边心距把正多边形分成 2n 个全等的直角三角形。 (2) 所有的正多边形都是轴对称图形,每个正 n 边形共有 n 条对称轴,每条对称轴都经过正 n 边形的中心;当正 n 边形的边数为偶数时,这个正 n 边形也是中心对称图形,正 n 边形的中心就是对称中心。 (3) 正 n 边形的每一个内角等于 (n - 2) ´180° ,中心角和外角相等,等于 360° 。 n n 24.4 弧长和扇形面积 npR 知识点一 弧长公式 l= 180 n npR 在半径为 R 的圆中,360°的圆心角所对的弧长就是圆的周长 C=2πR,所以 n°的圆心角所对的弧长的计算公式 l= ×2πR= 。 360 180 知识点二 扇形面积公式 npR 2 在半径为 R 的圆中,360°的圆心角所对的扇形面积就是圆的面积 S=πR2,所以圆心角为 n°的扇形的面积为 S 扇形= 360 。 比较扇形的弧长公式和面积公式发现: npR 2 npR 1 1 1 S 扇形= 360 = 180 ´ 2 R = 2 lR,所以s扇形 = 2 lR 知识点三 圆锥的侧面积和全面积 圆锥的侧面积是曲面,沿着圆锥的一条母线将圆锥的侧面展开,容易得到圆锥的侧面展开图是一个扇形。设圆锥的母线长为 l,底面圆的半径为 r,那么这个扇形的半径为 l,扇形的弧长为 2πr,因此圆锥的侧面积 s圆锥侧 = 12 × 2pr × l = prl 。圆锥的全面积为 s圆锥全 = s圆锥侧 + s底 = prl + pr 2 。 练习: 一.选择题(共10小题) 1.下列说法,正确的是( ) A.弦是直径 B. 弧是半圆 C.半圆是弧 D. 过圆心的线段是直径 2.如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=( ) A.3cm B. 4cm C. 5cm D. 6cm (2题图) (3题图) (4题图) (5题图) (8题图) 3.一个隧道的横截面如图所示,它的形状是以点O为圆心,5为半径的圆的一部分,M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E.若CD=6,则隧道的高(ME的长)为( ) A.4 B. 6 C. 8 D. 9 4.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是( ) A.51° B. 56° C. 68° D. 78° 5.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为( ) A.25° B. 50° C. 60° D. 30° 6.⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为( ) A.点A在圆上 B. 点A在圆内 C.点A在圆外 D. 无法确定 7.已知⊙O的直径是10,圆心O到直线l的距离是5,则直线l和⊙O的位置关系是( ) A.相离 B. 相交 C. 相切 D. 外切 8.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为( ) A.2, B. 2,π C. , D. 2, 9.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长( ) A.2π B. π C. D. 10.如图,直径AB为12的半圆,绕A点逆时针旋转60°,此时点B旋转到点B′,则图中阴影部分的面积是( ) A.12π B. 24π C. 6π D. 36π 二.填空题(共10小题) 11.如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为 . (9题图) (10题图) (11题图) (12题图) 12.如图,在△ABC中,∠C=90°,∠A=25°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,则的度数为 . 13.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为的中点.若∠A=40°,则∠B= 度. (13题图) (14题图) (15题图) (17题图) 14.如图所示,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为 . 15.如图,点O是正五边形ABCDE的中心,则∠BAO的度数为 . 16.已知一条圆弧所在圆半径为9,弧长为π,则这条弧所对的圆心角是 . 17.如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则两弧之间的阴影部分面积是 (结果保留π). 18.已知圆锥的底面圆半径为3,母线长为5,则圆锥的全面积是 . 19.如果圆柱的母线长为5cm,底面半径为2cm,那么这个圆柱的侧面积是 . 20.半径为R的圆中,有一弦恰好等于半径,则弦所对的圆心角为 . 三.解答题(共5小题) 21.如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF⊥AD. (1)请证明:E是OB的中点; (2)若AB=8,求CD的长. 22.已知:如图,C,D是以AB为直径的⊙O上的两点,且OD∥BC.求证:AD=DC. 23.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F. (1)求证:DF⊥AC; (2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积. 24.如图,△OAB中,OA=OB=4,∠A=30°,AB与⊙O相切于点C,求图中阴影部分的面积.(结果保留π) 25.一个几何体的三视图如图所示,根据图示的数据计算出该几何体的表面积. 新人教版九年级数学上册第二十四章圆单元试题参考答案 一.选择题(共10小题) 1.C 2.B 3.D 4.A 5.A 6.B 7.C 8.D 9.B 10.B 二.填空题(共10小题) 11. 12.50° 13.70 14.1或5 15.54° 16.50° 17.2π 18.24π 19.20πcm2 20.60° 三.解答题(共5小题) 21.(1)证明:连接AC,如图 ∵直径AB垂直于弦CD于点E,∴,∴AC=AD, ∵过圆心O的线CF⊥AD,∴AF=DF,即CF是AD的中垂线,∴AC=CD, ∴AC=AD=CD.即:△ACD是等边三角形,∴∠FCD=30°, 在Rt△COE中,,∴,∴点E为OB的中点; (2)解:在Rt△OCE中,AB=8,∴, 又∵BE=OE,∴OE=2,∴,∴. (21题图) (22题图) (23题图) (24题图) 22.证明:连结OC,如图, ∵OD∥BC,∴∠1=∠B,∠2=∠3, 又∵OB=OC,∴∠B=∠3,∴∠1=∠2,∴AD=DC. 23.(1)证明:连接OD,∵OB=OD,∴∠ABC=∠ODB, ∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC, ∵DF是⊙O的切线,∴DF⊥OD,∴DF⊥AC. (2)解:连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°, ∵OA=OE,∴∠AOE=90°,∵⊙O的半径为4,∴S扇形AOE=4π,S△AOE=8 ,∴S阴影=4π﹣8. 24.解:连接OC,∵AB与圆O相切,∴OC⊥AB, ∵OA=OB,∴∠AOC=∠BOC,∠A=∠B=30°, 在Rt△AOC中,∠A=30°,OA=4,∴OC=OA=2,∠AOC=60°, ∴∠AOB=120°,AC==2,即AB=2AC=4, 则S阴影=S△AOB﹣S扇形=×4×2﹣=4﹣.故阴影部分面积4﹣. 25.解:由三视图可知该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5, 所以圆锥的母线长==13, 所以圆锥的表面积=π•52+•2π•5•13=90π. Welcome To Download !!! 欢迎您的下载,资料仅供参考! 精品资料- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 九年级 数学 上册 知识点 归纳 练习 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文