初三数学二次函数知识点总结及经典模拟题.doc
《初三数学二次函数知识点总结及经典模拟题.doc》由会员分享,可在线阅读,更多相关《初三数学二次函数知识点总结及经典模拟题.doc(9页珍藏版)》请在咨信网上搜索。
《二次函数》知识点总结 一. 二次函数概念: 1.二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数.这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体实数. 2. 二次函数的结构特征: ⑴ 等号左边是函数,右边是关于自变量的二次式,的最高次数是2. ⑵ 是常数,是二次项系数,是一次项系数,是常数项. 二. 二次函数的图像和性质 表达式 (a≠0) a值 图像 开口 方向 对称轴 顶点 坐标 增减性 最值 ①y=ax2 a>0 向上 y轴 (0,0) ①当x>0时,y随x的增大而增大 ②当x<0时,y随x的增大而减小 当x=0时,y有最小值,即=0 a<0 向下 y轴 (0,0) ①当x>0时,y随x的增大而减小 ②当x<0时,y随x的增大而增大 当x=0时,y有最大值,即=0 ②y=ax2+k a>0 向上 y轴 (0,k) ①当x>0时,y随x的增大而增大 ②当x<0时,y随x的增大而减小 当x=0时,y有最小值,即=k a<0 向下 y轴 (0,k) ①当x>0时,y随x的增大而减小 ②当x<0时,y随x的增大而增大 当x=0时,y有最大值,即=k ③y=a(x-h)2 a>0 向上 直线x=h (h,0) ①当x>h时,y随x的增大而增大 ②当x<0时,y随x的增大而减小 当x=h时,y有最小值,即=0 a<0 向下 直线x=h (h,0) ①当x>h时,y随x的增大而减小 ②当x<0时,y随x的增大而增大 当x=h时,y有最大值,即=0 ④y=a(x-h)2+k a>0 向上 直线x=h (h,k) ①当x>h时,y随x的增大而增大 ②当x<h时,y随x的增大而减小 当x=h时,y有最小值,即=k a<0 向下 直线x=h (h,k) ①当x>h时,y随x的增大而减小 ②当x<h时,y随x的增大而增大 当x=h时,y有最大值,即=k ⑤ y=ax2+bx+c 可化为: y=a(x+2+ a>0 向上 直线x=- (-,) ①当x>-时,y随x的增大而增大 ②当x<-时,y随x的增大而减小 当x=-时, y有最小值,= a<0 向下 直线x=- (-,) ①当x>-时,y随x的增大而减小 ②当x<-时,y随x的增大而增大 当x=-时, y有最大值,即 y最大值= 三. 二次函数图象的平移 1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标; ⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下: 2. 平移规律 在原有函数的基础上“值正右移,负左移;值正上移,负下移”. 概括成八个字“左加右减(自变量),上加下减(常数项)” 温馨提示 二次函数图像间的平移可看作是顶点间的平移,因此只要掌握了顶点是如何平移的,就掌握了二次函数图像间的平移. 四.二次函数与的比较 从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中. 五.二次函数解析式的三种表示方法 名称 解析式 使用范围 一般式 已知任意三个点 顶点式 已知顶点(h,k)及另一点 交点式 已知与x轴的两个交点及另一个点 温馨提示 任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化,将顶点式、交点式去括号、合并同类项就可转化为一般式,把一般式配方、因式分解就可转化为顶点式、交点式. 六.二次函数的图象与各项系数之间的关系 1. 二次项系数【a决定抛物线的开口方向,|a|决定抛物线开口的大小】 ⑴ 当时,抛物线开口向上,的值越大,开口越小,a的值越小,开口越大; ⑵ 当时,抛物线开口向下,的值越大,开口越大,的值越大,开口越大. 注:|a|越大,抛物线的开口越小,|a|越小,抛物线开口越大 抛物线的形状相同,即|a|相同. 2. 一次项系数【由a和对称轴共同决定】 对称轴在y轴的左侧,a,b同号;对称轴在y轴的右侧,a,b异号. (左同右异 b为0时,对称轴为y轴) 3. 常数项 ⑴ 当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正; ⑵ 当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为; ⑶ 当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负. 总结起来,决定了抛物线与轴交点的位置. 七.二次函数图象(抛物线)与x轴交点情况的判断: y=ax2+bx+c (a≠0,a、b、c都是常数) 1.△=b²-4ac>0抛物线与x轴有两个交点 2.△=b²-4ac=0抛物线与x轴有一个交点 3.△=b²-4ac<0抛物线与x轴没有交点 ① 当时,图象落在轴的上方,无论为任何实数,都有; ②当时,图象落在轴的下方,无论为任何实数,都有. 八.二次函数与一元二次方程、一元二次不等式的解之间的关系: 1.二次函数y=ax2+bx+c的图象与x轴交点的横坐标是一元二次方程ax2+bx+c=0的解.因此利用二次函数图象可求以x为未知数的一元二次方程ax2+bx+c=0的解(从图象上进行判断). 2.二次函数y=ax2+bx+c在x轴上方的图象上的点的横坐标是一元二次不等式ax2+bx+c>0的解;在x轴下方的图象上的点的横坐标是一元二次不等式ax2+bx+c<0的解. 九.二次函数的应用 二次函数应用 ☆☆二次函数抛物线简单的图形变换☆☆ (1)顶点式【(a≠0)】 名称 a 顶点(h,k) 平移 a (h, k) ↓ ↓ 左加右减 上加下减 对 称 关于x轴对称 -a (h,-k) 关于y轴对称 a (-h,k) 关于原点对称 -a (-h,-k) 旋转(绕顶点旋转180°) -a (h,k) (2)一般式【(a≠0)】 ①平移:如将二次函数向右平移m(m>0)个单位,再向下平移n(n>0)个单位,得到 ②对称 名称 a、b、c的变化 解析式变化 关于x轴对称 a→-a; b→-b; c→-c y=ax²+bx+c→y=-ax²-bx-c 关于y轴对称 a→不变;b→-b;c→不变 y=ax²+bx+c→y=ax²-bx+c 关于原点对称 a→-a;b→不变;c→-c y=ax²+bx+c→y=-ax²+bx-c 注:无论是平移、轴对称还是旋转,最好先把二次函数化成顶点式,然后再根据需要进行求解. 二次函数对应练习试题 一.选择题 1.二次函数的顶点坐标是( ) A.(2,-11) B.(-2,7) C.(2,11) D. (2,-3) 2.把抛物线向上平移1个单位,得到的抛物线是( ) A. B. C. D. 3.函数和在同一直角坐标系中图象可能是图中的( ) 4.已知二次函数的图象如图所示,则下列结论: ①a,b同号;②当和时,函数值相等;③④当时, 的值只能取0.其中正确的个数是( ) A.1个 B.2个 C. 3个 D. 4个 5.已知二次函数的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于的一元二次方程的两个根分别是( )A.-1.3 B.-2.3 C.-0.3 D.-3.3 6. 已知二次函数的图象如图所示,则点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 7.方程的正根的个数为( ) A.0个 B.1个 C.2个. 3 个 8.已知抛物线过点A(2,0),B(-1,0),与轴交于点C,且OC=2.则这条抛物线的解析式为 A. B. C. 或 D. 或 二.填空题 9.二次函数的对称轴是,则_______. 10.已知抛物线y=-2(x+3)²+5,如果y随x的增大而减小,那么x的取值范围是_______. 11.一个函数具有下列性质:①图象过点(-1,2),②当x<0时,函数值y随自变量x的增大而增大;满足上述两条性质的函数的解析式是 (只写一个即可). 12.抛物线的顶点为C,已知直线过点C,则这条直线与两坐标轴所围成的三角形面积为 . 13. 二次函数的图象是由的图象向左平移1个单位,再向下平移2个单位得到的,则b= ,c= . 14.如图,一桥拱呈抛物线状,桥的最大高度是16米,跨度是40米,在线段AB上离中心M处5米的地方,桥的高度是 (π取3.14). 三.解答题: 15.已知二次函数图象的对称轴是,图象经过(1,-6),且与轴的交点为(0,). (1)求这个二次函数的解析式; (2)当x为何值时,这个函数的函数值为0? 第15题图 (3)当x在什么范围内变化时,这个函数的函数值随x的增大而增大? 16.某种爆竹点燃后,其上升高度h(米)和时间t(秒)符合关系式 (0<t≤2),其中重力加速度g以10米/秒2计算.这种爆竹点燃后以v0=20米/秒的初速度上升, (1)这种爆竹在地面上点燃后,经过多少时间离地15米? (2)在爆竹点燃后的1.5秒至1.8秒这段时间内,判断爆竹是上升,或是下降,并说明理由. 17.如图,抛物线经过直线与坐标轴的两个交点A、B,此抛物线与轴的另一个交点为C,抛物线顶点为D. (1)求此抛物线的解析式; (2)点P为抛物线上的一个动点,求使:5 :4的点P的坐标。 (3)点M为平面直角坐标系上一点,写出使点M、A、B、D为平行四边形的点M的坐标. 18. 红星建材店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该建材店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7. 5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元). (1)当每吨售价是240元时,计算此时的月销售量; (2)求出y与x的函数关系式(不要求写出x的取值范围); (3)该建材店要获得最大月利润,售价应定为每吨多少元? (4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由. 19.某商场试销一种成本为60元/件的T恤,规定试销期间单价不低于成本单价,又获利不得高于40%,经试销发现,销售量y(件)与销售单价x(元/件)符合一次函数y=kx+b,且x=70时,y=50;x=80时,y=40; (1)求出一次函数y=kx+b的解析式 (2)若该商场获得利润为w元,试写出利润w与销售单价x之间的关系式,销售单价定为多少时,商场可获得最大利润,最大利润是多少? 二次函数应用题训练 1.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(分)之间满足函数关系:y = -0.1x2 +2.6x + 43 (0≤x≤30). (1)当x在什么范围内时,学生的接受能力逐步增强?当x在什么范围内时,学生的接受能力逐步减弱? (2)第10分钟时,学生的接受能力是多少? (3)第几分钟时,学生的接受能力最强? 2.如图,已知△ABC是一等腰三角形铁板余料,其中AB=AC=20cm,BC=24cm.若在△ABC上截出一矩形零件DEFG,使EF在BC上,点D、G分别在边AB、AC上.问矩形DEFG的最大面积是多少? 3.已知锐角△ABC中,边BC长为12,高AD长为8 (1) 如图,矩形EFGH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K ① 求的值 ② 设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值 (2) 若ABAC,正方形PQMN的两个顶点在△ABC一边上,另两个顶点分别在△ABC的另两边上,直接写出正方形PQMN的边长 4.如图,△ABC中,∠B=90°,AB=6cm,BC=12cm.点P从点A开始,沿AB边向点B 以每秒1cm的速度移动;点Q从点B开始,沿着BC边向点C以每秒2cm的速度移动.如果P,Q 同时出发,问经过几秒钟△PBQ的面积最大?最大面积是多少? 5.如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系.y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m. (1)求抛物线的解析式; (2)一辆货运卡车高4.5m,宽2.4m,它能通过该隧道吗? (3)如果该隧道内设双行道,为了安全起见,在隧道正中间设有0.4m的隔离带,则该辆货运卡车还能通过隧道吗? 【举一反三】如图,隧道的截面由圆弧AED和矩形ABCD构成,矩形的长BC为12m,宽AB为3m,隧道的顶端E(圆弧AED的中点)高出道路(BC)7m. 求圆弧AED所在圆的半径; 如果该隧道内设双行道,现有一辆超高货运卡车高6.5m,宽2.3m,问这辆货运卡车能否通过该隧道. 6.如图,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米. (1)建立如图所示的直角坐标系,求抛物线的表达式; (2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少. 7.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x m. (1)要使鸡场面积最大,鸡场的长度应为多少m? (2)如果中间有n(n是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少m?比较(1)(2)的结果,你能得到什么结论? 8.某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足关系:m=140-2x. (1)写出商场卖这种商品每天的销售利润y与每件的销售价x间的函数关系式; (2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少? 二次函数专题复习 图像特征与a、b、c、△符号的关系 1.已知二次函数,如图所示,若,,那么它的图象大致是 ( ) 2.已知二次函数的图象如图所示,则点(ac,bc)在 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.已知二次函数的图象如下,则下列结论正确的是 ( ) A. B. C. D. 4. 二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论: ①a>0;②c>0;③b2-4ac>0,其中正确的个数是( ) A.0个 B.1个 C.2个 D.3个 5.二次函数y=ax2+bx+c的图像如图1,则点M(b,)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 6.二次函数的图象如图所示,则( ) A.a>0,b²-4ac<0 B.a>0,b²-4ac>0 C.a<0,b²-4ac<0 D.a<0,b²-4ac>0 7.已知二次函数y=ax+bx+c的图象如图所示,那么下列判断不正确的是( ) A.ac<0 B.a-b+c>0 C.b=-4a D.关于x的方程ax+bx+c=0的根是x1=-1,x2=5 8.已知二次函数y=ax+bx+c(a≠0)的图象如图所示,有下列结论: ①b-4ac>0;②abc>0;③8a+c>0;④9a+3b+c<0其中,正确结论的个数是( ) A.1 B.2 C.3 D.4 9 / 9- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初三 数学 二次 函数 知识点 总结 经典 模拟
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文