高中数学知识点总结之三角函数篇.doc
《高中数学知识点总结之三角函数篇.doc》由会员分享,可在线阅读,更多相关《高中数学知识点总结之三角函数篇.doc(13页珍藏版)》请在咨信网上搜索。
精品教育 第三章 三角函数、解三角形 第1讲 任意角和弧度制及任意角的三角函数 一、必记3个知识点 1.角的概念 (1)分类 (2)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}. 2.弧度的定义和公式 (1)定义:长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式:①弧度与角度的换算:360°=2π弧度;180°=π弧度;②弧长公式:l=|α|r;③扇形面积公式:S扇形=lr和|α|r2. 3.任意角的三角函数 (1)定义:设α是一个任意角,它的终边与单位圆交于点P(x,y),则sin α=y,cos α=x,tan α=(x≠0). (2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是(1,0). 如图中有向线段MP,OM,AT分别叫做角α的正弦线,余弦线和正切线. 二、必明3个易误区 1.易混概念:第一象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角. 2.利用180°=π rad进行互化时,易出现度量单位的混用. 3.三角函数的定义中,当P(x,y)是单位圆上的点时有sin α=y,cos α=x,tan α=,但若不是单位圆时,如圆的半径为r,则sin α=,cos α=,tan α=. 三、必会2个方法 1.三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦; 2.对于利用三角函数定义解题的题目,如果含有参数,一定要考虑运用分类讨论,而在求解简单的三角不等式时,可利用单位圆及三角函数线,体现了数形结合的思想. 考点一 角的集合表示及象限角的判定 1.给出下列四个命题: ①-是第二象限角;②是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题有( ) A.1个 B.2个 C.3个 D.4个 解析:选C -是第三象限角,故①错误;=π+,从而是第三象限角,故②正确;-400°=-360°-40°,从而③正确;-315°=-360°+45°,从而④正确. 2.设集合M=,N=,那么( ) A.M=N B.M⊆N C.N⊆M D.M∩N=∅ 解析:选B 法一:由于M=={…,-45°,45°,135°,225°,…}, N=={…,-45°,0°,45°,90°,135°,180°,225°,…},显然有M⊆N,故选B. 法二:由于M中,x=·180°+45°=k·90°+45°=45°·(2k+1),2k+1是奇数;而N中,x=·180°+45°=k·45°+45°=(k+1)·45°,k+1是整数,因此必有M⊆N,故选B. 3.终边在直线y=x上的角的集合为________. 解析:终边在直线y=x上的角的集合为{α|α=kπ+,k∈Z}.答案:{α|α=kπ+,k∈Z} 4.在-720°~0°范围内找出所有与45°终边相同的角为________. 解析:所有与45°有相同终边的角可表示为:β=45°+k×360°(k∈Z),则令-720°≤45°+k×360°<0°, 得-765°≤k×360°<-45°,解得-≤k<-,从而k=-2或k=-1,代入得β=-675°或β=-315°. 答案:-675°或-315° [类题通法] 1.利用终边相同角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k赋值来求得所需角. 2.已知角α的终边位置,确定形如kα,π±α等形式的角终边的方法:先表示角α的范围,再写出kα,π±α等形式的角范围,然后就k的可能取值讨论所求角的终边位置. 考点二 三角函数的定义 [典例] (1)已知角α的终边上一点P的坐标为,则角α的最小正值为( ) A. B. C. D. (2)(2013·临川期末)已知α是第二象限角,其终边上一点P(x,),且cos α=x,则sin=________. [解析] (1)由题意知点P在第四象限,根据三角函数的定义得cos α=sin =,故α=2kπ-(k∈Z),所以α的最小正值为. (2)由题意得cos α==x,解得x=0或x=或x=-. 又α是第二象限角,∴x=-.即cos α=-,sin=cos α=-. [答案] (1)D (2)- [类题通法] 用定义法求三角函数值的两种情况 (1)已知角α终边上一点P的坐标,则可先求出点P到原点的距离r,然后用三角函数的定义求解; (2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求相关问题. [针对训练]:已知角α的终边在直线y=-3x上,求10sin α+的值. 解:设α终边上任一点为P(k,-3k),则r==|k|.当k>0时,r=k, ∴sin α==-,==,∴10sin α+=-3+3=0; 当k<0时,r=-k,∴sin α==,==-, ∴10sin α+=3-3=0.综上,10sin α+=0. 考点三 扇形的弧长及面积公式 [典例] 已知扇形周长为10,面积是4,求扇形的圆心角. [解]:设圆心角是θ,半径是r,则⇒(舍),故扇形圆心角为. [类题通法] 弧度制应用的关注点 (1)弧度制下l=|α|·r,S=lr,此时α为弧度.在角度制下,弧长l=,扇形面积S=,此时n为角度,它们之间有着必然的联系. (2)在解决弧长、面积及弓形面积时要注意合理应用圆心角所在的三角形. [针对训练]:已知扇形的圆心角是α=120°,弦长AB=12 cm,求弧长l. 解:设扇形的半径为r cm,如图.由sin 60°=,得r=4 cm,∴l=|α|·r=×4=π(cm). 课后作业 [试一试] 1.若α=k·180°+45°(k∈Z),则α在( A ) A.第一或第三象限 B.第一或第二象限 C.第二或第四象限 D.第三或第四象限 2.已知角α的终边经过点(,-1),则sin α=________.答案:- [练一练]:若sin α<0且tan α>0,则α是( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角 解析:选C 由sin α<0,知α在第三、第四象限或α终边在y轴的负半轴上,由tan α>0,知α在第一或第三象限,因此α在第三象限. [做一做] 1.如图所示,在直角坐标系xOy中,射线OP交单位圆O于点P,若∠AOP=θ,则点P的坐标是( ) A.(cos θ,sin θ) B.(-cos θ,sin θ) C.(sin θ,cos θ) D.(-sin θ,cos θ) 解析:选A 由三角函数的定义知P(cos θ,sin θ),选A. 2.已知扇形的周长是6 cm,面积是2 cm2,则扇形的圆心角的弧度数是( ) A.1或4 B.1 C.4 D.8 解析:选A 设扇形的半径和弧长分别为r,l,则易得解得或 故扇形的圆心角的弧度数是4或1. 3.已知角α的终边经过点(3a-9,a+2),且cos α≤0,sin α>0,则实数a的取值范围是( ) A.(-2,3] B.(-2,3) C.[-2,3) D.[-2,3] 解析:选A ∵cos α≤0,sin α>0,∴角α的终边落在第二象限或y轴的正半轴上. ∴∴-2<a≤3.故选A. 4.在与2 010°终边相同的角中,绝对值最小的角的弧度数为________. 解析:2 010°=π=12π-,∴与2 010°终边相同的角中绝对值最小的角的弧度数为.答案: 5.(2014·辽源模拟)若三角形的两个内角α,β满足sin αcos β<0,则此三角形为________. 解析:∵sin αcos β<0,且α,β是三角形的两个内角.∴sin α>0,cos β<0,∴β为钝角. 故此三角形为钝角三角形.答案:钝角三角形 6.已知角α的终边过点P(-3cos θ,4cos θ),其中θ∈,求α的三角函数值. 解:∵θ∈,∴-1<cos θ<0,∴r==-5cos θ,故sin α=-,cos α=,tan α=-. 7.已知cos θ·tan θ<0,那么角θ是( ) A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角 D.第一或第四象限角 解析:选C 易知sin θ<0,且cos θ≠0,∴θ是第三或第四象限角. 8.已知角α和角β的终边关于直线y=x对称,且β=-,则sin α=( ) A.- B. C.- D. 解析:选D 因为角α和角β的终边关于直线y=x对称,所以α+β=2kπ+(k∈Z),又β=-,所以α=2kπ+(k∈Z),即得sin α=. 9.点P从(1,0)出发,沿单位圆逆时针方向运动弧长到达Q点,则Q点的坐标为( ) A. B. C. D. 解析:选A 由三角函数定义可知Q点的坐标(x,y)满足x=cos=-,y=sin=. 10.给出下列各函数值:①sin(-1 000°);②cos(-2 200°);③tan(-10);④,其中符号为负的是( ) A.① B.② C.③ D.④ 解析:选C sin(-1 000°)=sin 80°>0;cos(-2 200°)=cos(-40°)=cos 40°>0;tan(-10)=tan(3π-10)<0; =,sin>0,tan<0,∴原式>0. 11.在直角坐标系中,O是原点,A(,1),将点A绕O逆时针旋转90°到B点,则B点坐标为__________. 解析:依题意知OA=OB=2,∠AOx=30°,∠BOx=120°, 设点B坐标为(x,y),所以x=2cos 120°=-1,y=2sin 120°=,即B(-1,).答案:(-1,) 12.如图所示,在平面直角坐标系xOy中,角α的终边与单位圆交于点A,点A的纵坐标为,则cos α=________. 解析:因为A点纵坐标yA=,且A点在第二象限,又因为圆O为单位圆,所以A点横坐标xA=-,由三角函数的定义可得cos α=-.答案:- 13.一个扇形OAB的面积是1 cm2,它的周长是4 cm,求圆心角的弧度数和弦长AB. 解:设圆的半径为r cm,弧长为l cm,则解得∴圆心角α==2.如图,过O作OH⊥AB于H.则∠AOH=1弧度.∴AH=1·sin 1=sin 1(cm),∴AB=2sin 1(cm). 三角函数 1. 你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗? 2. 熟记三角函数的定义,单位圆中三角函数线的定义 3. 你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗? (x,y)作图象。 5. 在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。 6. 在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗? 7. 熟练掌握三角函数图象变换了吗? (平移变换、伸缩变换) 平移公式: 图象? 8. 熟练掌握同角三角函数关系和诱导公式了吗? “奇”、“偶”指k取奇、偶数。 A. 正值或负值 B. 负值 C. 非负值 D. 正值 9 熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗? 理解公式之间的联系: 应用以上公式对三角函数式化简。(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。) 具体方法: (2)名的变换:化弦或化切 (3)次数的变换:升、降幂公式 (4)形的变换:统一函数形式,注意运用代数运算。 10. 正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形? (应用:已知两边一夹角求第三边;已知三边求角。) 11. 用反三角函数表示角时要注意角的范围。 -可编辑-- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 知识点 总结 三角函数
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文