小学六年级奥数工程问题及答案.doc
《小学六年级奥数工程问题及答案.doc》由会员分享,可在线阅读,更多相关《小学六年级奥数工程问题及答案.doc(41页珍藏版)》请在咨信网上搜索。
。 小学六年级奥数工程问题 1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时? 2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天? 3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时? 4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成? 5.师徒俩人加工同样多的零件。当师傅完成了1/2时,徒弟完成了120个。当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个? 6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。单份给男生栽,平均每人栽几棵? 7.一个池上装有3根水管。甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完? 8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天? 9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟? 10、一项工程,甲先做2天,乙在做3天,完成全工程的四分之一,甲再做3天完成余下的四分之一,最后再由乙做,完成这项工作还要多少天? 小升初数学专题之解方程 一. 字母的运算 二. 去括号(主要是运用乘法的分配律和加减法的运算性质) 1. 2. 3. 应用上面的性质去掉下面各个式子的括号,能进行运算的药进行运算 三. 等式的性质. 1.等式的定义: ,叫做等式; 2.等式的性质: (1).等号的两边同时加上或减去同一个数,等号的左右两边仍相等; 用字母表示为:若a=b,c为任意一个数,则有a+c=b+c(a-c=b-c); (2).等号的两边同时乘以同一个数,等号的左右两边仍相等; 用字母表示为: ; (3).等号的两边同时除以同一个不为零的数,等号的左右两边仍相等. 用字母表示为: ; 四. 方程 1.方程的定义:含有未知数的等式叫做方程; 2.方程的解:满足方程的未知数的值,叫做方程的解; 3.解方程:求方程的解的过程,叫做解方程. 五. 解方程 1.运用等式的性质解简单的方程, 如果把画框的部分省略,我们把一个数从等号的左边移到右边的过程,叫做移项, 注意把一个数从方程的左边移到右边时,原来是加的变成减,原来是减的变成加号。 练习 2. 典型的例子及解方程的一般步骤; 练习 3.解方程的一般步骤: -可编辑修改- 1. 去分母;(应用等式的性质,等号的两边同 时乘以公分母) 2. 去括号;(运用乘法的分配律及加减法运算律) 3. 移项;(把含有未知数的移到方程左边,不含未知数的移到方程右边) 4. 合并;(就是进行运算了) 5. 化未知数的系数为1 6. 检验;(把求出来的x的值代入方程的左右两边进行运算,看左边是否等于右边) 练习 【方程强化训练题】 行程专题50道 1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离. 2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米? 3、A,B两地相距540千米。甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。那么两车第三次相遇为止,乙车共走了多少千米? 4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题) 5、小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)? 6、 小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间? 7、快车和慢车分别从A,B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12.5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间? 8、一辆车从甲地开往乙地.如果车速提高20%,可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25%,则可提前40分钟到达.那么甲、乙两地相距多少千米? 9、一辆汽车从甲地开往乙地,如果车速提高20%,可以提前1小时到达。如果按原速行驶一段距离后,再将速度提高30%,也可以提前1小时到达,那么按原速行驶了全部路程的几分之几? 10、甲、乙两车分别从A,B两地出发,相向而行,出发时,甲、乙的速度比是 5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B时,乙离A地还有10千米。那么A,B两地相距多少千米? 11、A、B两地相距10000米,甲骑自行车,乙步行,同时从A地去B地。甲的速度是乙的4倍,途中甲的自行车发生故障,修车耽误了一段时间,这样乙到达占地时,甲离B地还有200米。甲修车的时间内,乙走了多少米? 12、爷爷坐汽车,小李骑自行车,沿一条公路同时从A地去B地。汽车每小时行40千米,是自行车速度的2.5倍。结果爷爷比小李提前3小时到达B地。A、B两地间的路程是多少千米? 13、如图,有一个圆,两只小虫分别从直径的两端A与C同时出发,绕圆周相向而行。它们第一次相遇在离A点8厘米处的B点,第二次相遇在离c点处6厘米的D点,问,这个圆周的长是多少? 14、两辆汽车都从北京出发到某地,货车每小时行60千米,15小时可到达。客车每小时行50千米,如果客车想与货车同时到达某地,它要比货车提前开出几小时? 15、小方从家去学校,如果他每小时比原来多走1.5千米,他走这段路只需原来时间的;如果他每小时比原来少走1.5千米,那么他走这段路的时间比原来时间多几分之几? 16、王刚骑自行车从家到学校去,平常只用20分钟。因途中有2千米正在修路,只好推车步行。步行速度只有骑车速度的,结果这天用了36分钟才到学校。王刚家到学校有多少千米? 17、甲、乙两人分别从A、B两地同时相向出发。相遇后,甲继续向B地走,乙马上返回,往B地走。甲从A地到达B地。 比乙返回B地迟0.5小时。已知甲的速度是乙的。甲从A地到达地B共用了多少小时? 18、一个圆的周长为60厘米,三个点把这个圆圈分成三等分,3只甲虫A、B、C按顺时针方向分别在这三个点上,它们同时按逆时针方向沿着圆圈爬行,A的速度为每秒5厘米,B的速度为每秒1.5厘米,C的速度为每秒2.5厘米.问3只甲虫爬出多少时间后第一次到达同一位置? 19、甲、乙二人分别从A、B两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又已知乙每分钟行50米,求A、B两地的距离。 20.甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人的下山速度都是各自上山速度的1.5倍,而且甲比乙速度快,两人出发后1小时,甲与乙在离山顶600米处相遇,当乙到达山顶时,甲恰好下到半山腰。那么甲回到出发点共用多少小时? 21.某人沿电车线路行走,没12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来。假设两个起点站的发车间隔是相同的,求这个发车间隔? 22.龟兔赛跑,全程5.2千米,兔子每小时跑20千米,乌龟每小时跑3千米,乌龟不停的跑;兔子边跑边玩,它先跑了1分钟后玩了15分钟,又跑了2分钟后玩15分钟,再跑3分钟后玩15分钟,......。那么先到达终点比后到达终点的快多少分钟? 23.A、C两地相距2千米,C、B两地相距5千米。甲、乙两人同时从C地出发,甲向B地走,到达B地后立即返回;乙向A地走,到达A地后立即返回。如果甲速度是乙速度的1.5倍,那么在乙到达D地时,还未能与甲相遇,他们还相距0.5千米,这时甲距C地多少千米? 24.张明和李军分别从甲、乙两地同时想向而行。张明平均每小时行5千米;而李军第一小时行1千米,第二小时行3千米,第三小时行5千米,……(连续奇数)。两人恰好在甲、乙两地的中点相遇。甲、乙两地相距多少千米? 25.甲、乙、丙三人进行200米赛跑,当甲到达终点时,乙离终点还有20米,丙离终点还有25米,如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多少米? 26.老师教同学们做游戏:在一个周长为114米的圆形跑道上,两个同学从一条直径的两端同时出发沿圆周开始跑,1秒钟后他们都调头跑,再过3秒他们又调头跑,依次照1、3、5……分别都调头而跑,每秒两人分别跑5.5米和3.5米,那么经过几秒,他们初次相遇? 28.迪斯尼乐园里冒失的米老鼠和唐老鸭把火车面对面的开上了同一条铁轨,米老鼠的速度为每秒10米,唐老鸭的速度为每秒8米。由于没有及时刹车,结果两列火车相撞。假如米老鼠和唐老鸭在相撞前多少秒同时紧急刹车,不仅可以避免两车相撞,两车车头还能保持3米的距离。(紧急刹车后米老鼠和唐老鸭的小火车分别向前滑行30米)。 29.A、B是一圈形道路的一条直径的两个端点,现有甲、乙两人分别从A、B两点同时沿相反方向绕道匀速跑步(甲、乙两人的速度未必相同),假设当乙跑完100米时,甲、乙两人第一次相遇,当甲差60米跑完一圈时,甲、乙两人第二次相遇,那么当甲、乙两人第十二次相遇时,甲跑完几圈又几米? 30.甲、乙两人步行的速度之比是7:5,甲、乙分别由A、B两地同时出发。如果相向而行,0.5小时后相遇;如果他们同向而行,那么甲追上乙需要多少小时? 31.甲、乙两人分别从A、B两地同时出发,相向而行,出发时他们的速度之比是3:2,他们第一次相遇后甲的速度提高了20﹪,乙的速度提高了30﹪,这样,当甲到达B地时,乙离A地还有14千米,那么A、B两地的距离是多少千米? 32.一条船往返于甲、乙两港之间,已知船在静水中的速度为每小时9千米,平时逆行与顺行所用的时间比为2:1。一天因为下暴雨,水流速度是原来的2倍,这条船往返共用了10小时,甲、乙两港相距多少千米? 33.姐弟俩正要从公园门口沿马路向东去某地,他们回家要从公园门口沿马路向西行,他们商量是先回家取车再骑车去某地省时间,还是直接从公园门口步行向东去某地省时间。姐姐算了一下:已知骑车与步行的速度之比是4︰1,从公园门口到达某地距离超过2千米时,回家取车才合算。那么,公园门口到他们家的距离有多少米? 34.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却要跑3步。猎犬至少跑多少米才能追上兔子? 35甲、乙、丙是一条路上的三个车站,乙站到甲、丙两站的距离相等,小强和小明同时分别从甲、丙两站出发相向而行,小强经过乙站100米时与小明相遇,然后两人又继续前进,小强走到丙站立即返回,经过乙站300米时又追上小明,问:甲、乙两站的距离是多少米? 36、甲、乙二人同时从A地去280千米外的B地,两人同时出发,甲先乘车到达某一地点后改为步行,车沿原路返回接乙,结果两人同时到达B地。已知甲、乙二人步行的速度是5千米/小时,汽车的速度是每小时55千米。问甲下车的地点距B还有多少千米? 37、如图所示,沿着某单位围墙外面的小路形成一个边长300米的正方形,甲、乙两人分别从两个对角处沿逆时针方向同时出发。已知甲每分走90米,乙每分走70米。问:至少经过多长时间甲才能看到乙? 38、某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟? 39、甲、乙之间的水路是234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时,问船速和水速各为每小时多少千米? 40、两港相距560千米,甲船往返两港需105小时,逆流航行比顺流航行多用了35小时。乙船的静水速度是甲船的静水速度的2倍,那么乙船往返两港需要多少小时? 41、甲、乙两港相距360千米,一轮船往返两港需35小时,逆流航行比顺流航行多花了5小时。现在有一机帆船,静水中速度是每小时12千米,这机帆船往返两港要多少小时? 42、 某船往返于相距180千米的两港之间,顺水而下需用10小时,逆水而上需用15小时。由于暴雨后水速增加,该船顺水而行只需9小时,那么逆水而行需要几小时? 43、一条隧道长360米,某列火车从车头入洞到全车进洞用了8秒钟,从车头入洞到全车出洞共用了20秒钟。这列火车长多少米? 44、铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少? 45、一条单线铁路上顺次有A、B、C、D、E五个车站,它们之间的距离依次是48、40、10、70千米。甲、乙两列火车分别从A、E两站相对开出,甲车先开4分钟,每小时行驶60千米,乙车每小时行驶50千米。两车只能在车站停车,互相让道错车。两车应在哪一车站会车(相遇),才能使停车等候的时间最短?先到的火车至少要停车多少时间? 46、 乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路,用了3小时.甲船返回原地比去时多用了几小时? 47、现在是3点,什么时候时针与分针第一次重合? 48、有一座时钟现在显示10时整。那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合? 49、在9点与10点之间的什么时刻,分针与时针在一条直线上? 50、晚上8点刚过,不一会小华开始做作业,一看钟,时针与分针正好成一条直线。做完作业再看钟,还不到9点,而且分针与时针恰好重合。小华做作业用了多长时间? 行程专题50道详解 1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离. 解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米, 通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米, 所以两次相遇点相距9-(3+4)=2千米。 2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米? 解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差 所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。 3、A,B两地相距540千米。甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。那么两车第三次相遇为止,乙车共走了多少千米? 解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。第二次相遇,乙正好走了1份到B地,又返回走了1份。这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。 4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题) 解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟。这时每分钟必须多走25米,所以总共多走了24×25=600米,而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600÷6=100米。总路程就是=100×30=3000米。 5、小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)? 解:画示意图如下. 第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了 3.5×3=10.5(千米). 从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是 10.5-2=8.5(千米). 每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程.其中张走了 3.5×7=24.5(千米), 24.5=8.5+8.5+7.5(千米). 就知道第四次相遇处,离乙村 8.5-7.5=1(千米). 答:第四次相遇地点离乙村1千米. 6、 小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间? 解:画一张示意图: 图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B与A之间这段距离,它等于 这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是(5.4-4.8)千米/小时.小张比小王多走这段距离,需要的时间是 1.3÷(5.4-4.8)×60=130(分钟). 这也是从出发到张、李相遇时已花费的时间.小李的速度10.8千米/小时是小张速度5.4千米/小时的2倍.因此小李从A到甲地需要 130÷2=65(分钟). 从乙地到甲地需要的时间是 130+65=195(分钟)=3小时15分. 答:小李从乙地到甲地需要3小时15分. 7、快车和慢车分别从A,B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12.5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间? 解:画一张示意图: 设C点是第一次相遇处.慢车从B到C用了5小时,从C到A用了12.5-5=7.5(小时).我们把慢车半小时行程作为1个单位.B到C10个单位,C到A15个单位.慢车每小时走2个单位,快车每小时走3个单位. 有了上面“取单位”准备后,下面很易计算了. 慢车从C到A,再加停留半小时,共8小时.此时快车在何处呢?去掉它在B停留1小时.快车行驶7 小时,共行驶3×7=21(单位).从B到C再往前一个单位到D点.离A点15-1=14(单位). 现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间是14÷(2+3)=2.8(小时). 慢车从C到A返回行驶至与快车相遇共用了7.5+0.5+2.8=10.8(小时). 答:从第一相遇到再相遇共需10小时48分. 8、一辆车从甲地开往乙地.如果车速提高20%,可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25%,则可提前40分钟到达.那么甲、乙两地相距多少千米? 解:设原速度是1. %后,所用时间缩短到原时间的这是具体地反映:距离固定,时间与速度成反比. 用原速行驶需要 同样道理,车速提高25%,所用时间缩短到原来的 如果一开始就加速25%,可少时间 现在只少了40分钟, 72-40=32(分钟).说明有一段路程未加速而没有少这个32分钟,它应是这段路程所用时间真巧,320-160=160(分钟),原速的行程与加速的行程所用时间一样.因此全程长 答:甲、乙两地相距270千米. 9、一辆汽车从甲地开往乙地,如果车速提高20%,可以提前1小时到达。如果按原速行驶一段距离后,再将速度提高30%,也可以提前1小时到达,那么按原速行驶了全部路程的几分之几? 解:设原速度是1. 后来速度为1+20%=1.2 速度比值: 这是具体地反映:距离固定,时间与速度成反比. 时间比值 :6:5 这样可以把原来时间看成6份,后来就是5份,这样就节省1份,节省1个小时。 原来时间就是=1×6=6小时。 同样道理,车速提高30%,速度比值:1:(1+30%)=1:1.3 时间比值:1.3:1 这样也节省了0.3份,节省1小时,可以推出行驶一段时间后那段路程的原时间为1.3÷0.3=13/3 所以前后的时间比值为(6-13/3):13/3=5:13。所以总共行驶了全程的5/(5+13)=5/18 10、甲、乙两车分别从A,B两地出发,相向而行,出发时,甲、乙的速度比是 5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B时,乙离A地还有10千米。那么A,B两地相距多少千米? 解:相遇后速度比值为[5×(1-20%)]:[4×(1+20%)]=5:6,假设全程为9份,甲走了5份,乙走了4份,之后速度发生变化,这样甲到达B地,甲又走了4份,根据速度变化后的比值,乙应该走了4×6÷5=24/5份,这样距A地还有5-24/5份,所以全程为10÷(1/5)×9=450千米。 11、A、B两地相距10000米,甲骑自行车,乙步行,同时从A地去B地。甲的速度是乙的4倍,途中甲的自行车发生故障,修车耽误了一段时间,这样乙到达占地时,甲离B地还有200米。甲修车的时间内,乙走了多少米? 解: 由甲共走了10000—200=9800(米),可推出在甲走的同时乙共走了9800÷4=2450(米),从而又可推出在甲修车的时间内乙走了10000—2450=7550(米)。列算式为10000一(10000—200)÷4=7550(米) 答:甲修车的时间内乙走了7550米。 12、爷爷坐汽车,小李骑自行车,沿一条公路同时从A地去B地。汽车每小时行40千米,是自行车速度的2.5倍。结果爷爷比小李提前3小时到达B地。A、B两地间的路程是多少千米? 解法一:根据“汽车的速度是自行车的2.5倍”可知,同时从A地到B地,骑自行车所花时间是汽车的2.5倍,也就是要比坐汽车多花1.5倍的时间,其对应的具体量是3小时,可知坐车要3÷(2.5一1)=2(小时),A、B两地问的路程为40×2=80(千米)。即40×〔3÷(2.5-1)〕80(千米) 解法二:汽车到B地时,自行车离B地(40÷2.5×3)=48(千米),这48千米就是自行车比汽车一共少走的路程,除以自行车每小时比汽车少走的路程,就可以得出汽车走完全程所用的时间,也就可以求出两地距离为40×〔(40÷2.5×3)÷(40-40÷2.5)〕=80(千米) 13、如图,有一个圆,两只小虫分别从直径的两端A与C同时出发,绕圆周相向而行。它们第一次相遇在离A点8厘米处的B点,第二次相遇在离c点处6厘米的D点,问,这个圆周的长是多少? 解: 如上图所示,第一次相遇,两只小虫共爬 行了半个圆周,其中从A点出发的小虫爬了8厘米,第二次相遇,两 只小虫从出发共爬行了1个半圆周,其中从A点出发的应爬行8×3=24(厘米),比半个圆周多6厘米,半个圆周长为8×3—6=18(厘米),一个圆周长就是: (8×3—6)×2=36(厘米) 答:这个圆周的长是36厘米。 14、两辆汽车都从北京出发到某地,货车每小时行60千米,15小时可到达。客车每小时行50千米,如果客车想与货车同时到达某地,它要比货车提前开出几小时? 解法一:由于货车和客车的速度不同,而要走的路程相同,所以货车和客车走完全程所需的时间不同,客车比货车多消耗的时间就是它比货车提早开出的时间。列算式为 60×15÷50—15=3(小时) 解法二:①同时出发,货车到达某地时客车距离某地还有(60-50)×15=150(千米) 客车要比货车提前开出的时间是:150÷50=3(小时) 15、小方从家去学校,如果他每小时比原来多走1.5千米,他走这段路只需原来时间的;如果他每小时比原来少走1.5千米,那么他走这段路的时间比原来时间多几分之几? 解:速度提高后,所用的时间是原来的,可知速度是原来的l,原来的速度是1.5÷(1一1)=6(千米)。 6一1.5=4.5(千米),相当于原来速度的,所用时间比原来多l÷一1=。列算式为 16、王刚骑自行车从家到学校去,平常只用20分钟。因途中有2千米正在修路,只好推车步行。步行速度只有骑车速度的,结果这天用了36分钟才到学校。王刚家到学校有多少千米? 解法一:王刚这天比平时多用36—20=16(分钟)。这是因为步行比骑车慢 所以步行了步行24分钟的路程骑车只需24×=8(分钟),所以骑车8分钟行2千米,骑车20分钟行2×(20÷8)=5(千米)。列算式为 解法二:设走2千米路,原计划所用时间X分钟,根据速度比等于时间的反比列出比例式1:3=X:[X+(36—20)],得出原来行2千米需8分钟,每分钟行2÷8= (千米),从而可求出全长为 17、甲、乙两人分别从A、B两地同时相向出发。相遇后,甲继续向B地走,乙马上返回,往B地走。甲从A地到达B地。 比乙返回B地迟0.5小时。已知甲的速度是乙的。甲从A地到达地B共用了多少小时? 解:相遇时,甲、乙两人所用时间相同。甲从A地到达B地比乙返回B地迟0.5小时,即从相遇点到B地这同一段路程中,甲比乙多用0.5小时。可求出从相遇点到B地甲用了0.5÷(1一)=2(小时),相遇时,把乙行的路程看做“l”,甲行的路程为,从而可求 18、一个圆的周长为60厘米,三个点把这个圆圈分成三等分,3只甲虫A、B、C按顺时针方向分别在这三个点上,它们同时按逆时针方向沿着圆圈爬行,A的速度为每秒5厘米,B的速度为每秒1.5厘米,C的速度为每秒2.5厘米.问3只甲虫爬出多少时间后第一次到达同一位置? 解:我们先考虑B、C两只甲虫什么时候到达同一位置,C与B相差20厘米,C追上B需要20÷(2.5—1.5)=20(秒).而20秒后每次追及又需60÷(2.5-1.5)=60(秒);再考虑 A与C,它们第一次到达同一位置要20÷(5—2.5)=8(秒),而8秒后,每次追及又需60÷(5--2.5)=24(秒).可分别列出A与C、B与C相遇的时间,推导出3只甲虫相遇的时间 解:(1)C第一次追上B所需时间20÷(2.5—1.5)=20(秒). (2)以后每次C追上B所需时间: 60÷(2.5—1.5)=60(秒). (3)C追上B所需的秒数依次为: 20,80,140,200,…. (4)A第一次追上C所需时间:20÷(5—2.5)=8(秒). (5)以后A每次追上C所需时间:60÷(5--2.5)=24(秒) (6)A追上C所需的秒数依次为: 8,32,56,80,104…. 19、甲、乙二人分别从A、B两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又已知乙每分钟行50米,求A、B两地的距离。 解: 先画图如下: 【方法一】 若设甲、乙二人相遇地点为C,甲追及乙的地点为D,则由题意可知甲从A到C用6分钟.而从A到D则用26分钟,因此,甲走C到D之间的路程时,所用时间应为:(26-6)=20(分)。 同时,由上图可知,C、D间的路程等于BC加BD.即等于乙在6分钟内所走的路程与在26分钟内所走的路程之和,为50×(26+6)=1600(米).所以,甲的速度为1600÷20=80(米/分),由此可求出A、B间的距离。 50×(26+6)÷(26-6)=50×32÷20=80(米/分) (80+50)×6=130×6=780(米) 答:A、B间的距离为780米。 【方法二】设甲的速度是x米/分钟 那么有(x-50)×26=(x+50)×6 解得x=80 所以两地距离为(80+50)×6=780米 20.甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人的下山速度都是各自上山速度的1.5倍,而且甲比乙速度快,两人出发后1小时,甲与乙在离山顶600米处相遇,当乙到达山顶时,甲恰好下到半山腰。那么甲回到出发点共用多少小时? 解析:由甲、乙两人下山的速度是上山的1.5倍,有: ⑴甲、乙相遇时,甲下山600米路程所需时间,相当于甲上山走600÷1.5=400米的时间。所以甲、乙以上山的速度走一小时,甲比乙多走600+400=1000米。 ⑵乙到山顶时,甲走到半山腰,也就是甲下山走了的路程。而走这路程所需时间,相当于甲上山走山坡长度÷1.5=的时间。所以在这段时间内,如 保持上山的速度,乙走了一个山坡的长度,甲走了1+=个山坡的长度。所以,甲上山的速度是乙的倍。 用差倍问题求解甲的速度,甲每小时走:1000÷(-1)×=4000米。 根据⑴的结论,甲以上山的速度走1小时的路程比山坡长度多400,所以山坡长3600米。 1小时后,甲已下坡600米,还有3600-600=3000米。所以,甲再用3000÷6000=0.5小时。 总上所述,甲一共用了1+0.5=1.5小时。 评注: 本题关键在转化,把下山的距离再转化为上山的距离,这种转化是在保证时间相等的情况下。通过转化,可以理清思路。但是也要分清哪些距离是上山走的,哪些是下山走的。 21.某人沿电车线路行走,没12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来。假设两个起点站的发车间隔是相同的,求这个发车间隔? 解析:设两车的距离为单位1。在车追人时,一辆车用12分钟追上距离为1的人。所以车与人的速度差为每分钟1÷12=。 在车与人迎面相遇时,人与车4分钟由相距1变为相遇,所以车与人的速度和为每分钟1÷4=。 根据和差问题公式,车的速度为每分钟(+)÷2=。 则发车间隔为1÷=6分钟。 22.龟兔赛跑,全程5.2千米,兔子每小时跑20千米,乌龟每小时跑3千米,乌龟不停的跑;兔子边跑边玩,它先跑了1分钟后玩了15分钟,又跑了- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 六年级 工程 问题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文