人教版高中数学必修4课后习题答案详解65843.doc
《人教版高中数学必修4课后习题答案详解65843.doc》由会员分享,可在线阅读,更多相关《人教版高中数学必修4课后习题答案详解65843.doc(24页珍藏版)》请在咨信网上搜索。
精品教育 第二章 平面向量 2.1平面向量的实际背景及基本概念 练习(P77) 1、略. 2、 . 这两个向量的长度相等 但它们不等. 3、 . 4、(1)它们的终点相同; (2)它们的终点不同. 习题2.1 A组(P77) 1、 (2). 3、与相等的向量有:;与相等的向量有:; 与相等的向量有:. 4、与相等的向量有:;与相等的向量有:; 与相等的向量有: 5、. 6、(1)×; (2)√; (3)√; (4)×. 习题2.1 B组(P78) 1、海拔和高度都不是向量. 2、相等的向量共有24对. 模为1的向量有18对. 其中与同向的共有6对 与反向的也有6对;与同向的共有3对 与反向的也有6对;模为的向量共有4对;模为2的向量有2对 2.2平面向量的线性运算 练习(P84) 1、图略. 2、图略. 3、(1); (2). 4、(1); (2); (3); (4). 练习(P87) 1、图略. 2、 . 3、图略. 练习(P90) 1、图略. 2、 . 说明:本题可先画一个示意图 根据图形容易得出正确答案. 值得注意的是与反向. 3、(1); (2); (3); (4). 4、(1)共线; (2)共线. 5、(1); (2); (3). 6、图略. 习题2.2 A组(P91) 1、(1)向东走20 km; (2)向东走5 km; (3)向东北走km; (4)向西南走km;(5)向西北走km;(6)向东南走km. 2、飞机飞行的路程为700 km;两次位移的合成是向北偏西53°方向飞行500 km. 3、解:如右图所示:表示船速 表示河水 的流速 以、为邻边作□ 则 表示船实际航行的速度. 在Rt△ABC中 所以 因为 由计算器得 所以 实际航行的速度是 船航行的方向与河岸的夹角约为76°. 4、(1); (2); (3); (4); (5); (6); (7). 5、略 6、不一定构成三角形. 说明:结合向量加法的三角形法则 让学生理解 若三个非零向量的和为零向量 且这三个向量不共线时 则表示这三个向量的有向线段一定能构成三角形. 7、略. 8、(1)略; (2)当时 9、(1); (2); (3); (4). 10、 . 11、如图所示 . 12、 . 13、证明:在中 分别是的中点 所以且 即; 同理 所以. 习题2.2 B组(P92) 1、丙地在甲地的北偏东45°方向 距甲地1400 km. 2、不一定相等 可以验证在不共线时它们不相等. 3、证明:因为 而 所以. 4、(1)四边形为平行四边形 证略 (2)四边形为梯形. 证明:∵ ∴且 ∴四边形为梯形. (3)四边形为菱形. 证明:∵ ∴且 ∴四边形为平行四边形 又 ∴四边形为菱形. 5、(1)通过作图可以发现四边形为平行四边形. 证明:因为 而 所以 所以 即∥. 因此 四边形为平行四边形. 2.3平面向量的基本定理及坐标表示 练习(P100) 1、(1) ; (2) ; (3) ; (4) . 2、 . 3、(1) ; (2) ; (3) ; (4) 4、∥. 证明: 所以.所以∥. 5、(1); (2); (3). 6、或 7、解:设 由点在线段的延长线上 且 得 ∴ ∴ ∴ 所以点的坐标为. 习题2.3 A组(P101) 1、(1); (2); (3). 说明:解题时可设 利用向量坐标的定义解题. 2、 3、解法一: 而 . 所以点的坐标为. 解法二:设 则 由可得 解得点的坐标为. 4、解: . . 所以 点的坐标为; 所以 点的坐标为; 所以 点的坐标为. 5、由向量共线得 所以 解得. 6、 所以与共线. 7、 所以点的坐标为; 所以点的坐标为; 故 习题2.3 B组(P101) 1、 . 当时 所以; 当时 所以; 当时 所以; 当时 所以. 2、(1)因为 所以 所以、、三点共线; (2)因为 所以 所以、、三点共线; (3)因为 所以 所以、、三点共线. 3、证明:假设 则由 得. 所以是共线向量 与已知是平面内的一组基底矛盾 因此假设错误 . 同理. 综上. 4、(1). (2)对于任意向量 都是唯一确定的 所以向量的坐标表示的规定合理. 2.4平面向量的数量积 练习(P106) 1、. 2、当时 为钝角三角形;当时 为直角三角形. 3、投影分别为 0 . 图略 练习(P107) 1、 . 2、 . 3、 . 习题2.4 A组(P108) 1、 . 2、与的夹角为120° . 3、 . 4、证法一:设与的夹角为. (1)当时 等式显然成立; (2)当时 与 与的夹角都为 所以 所以 ; (3)当时 与 与的夹角都为 则 所以 ; 综上所述 等式成立. 证法二:设 那么 所以 ; 5、(1)直角三角形 为直角. 证明:∵ ∴ ∴ 为直角 为直角三角形 (2)直角三角形 为直角 证明:∵ ∴ ∴ 为直角 为直角三角形 (3)直角三角形 为直角 证明:∵ ∴ ∴ 为直角 为直角三角形 6、. 7、. 于是可得 所以. 8、 . 9、证明:∵ ∴ ∴为顶点的四边形是矩形. 10、解:设 则 解得 或. 于是或. 11、解:设与垂直的单位向量 则 解得或. 于是或. 习题2.4 B组(P108) 1、证法一: 证法二:设 . 先证 由得 即 而 所以 再证 由得 即 因此 2、. 3、证明:构造向量 . 所以 ∴ 4、的值只与弦的长有关 与圆的半径无关. 证明:取的中点 连接 则 又 而 所以 5、(1)勾股定理:中 则 证明:∵ ∴. 由 有 于是 ∴ (2)菱形中 求证: 证明:∵ ∴. ∵四边形为菱形 ∴ 所以 ∴ 所以 (3)长方形中 求证: 证明:∵ 四边形为长方形 所以 所以 ∴. ∴ 所以 所以 (4)正方形的对角线垂直平分. 综合以上(2)(3)的证明即可. 2.5平面向量应用举例 习题2.5 A组(P113) 1、解:设 则 由得 即 代入直线的方程得. 所以 点的轨迹方程为. 2、解:(1)易知 ∽ 所以. (2)因为 所以 因此三点共线 而且 同理可知: 所以 3、解:(1); (2)在方向上的投影为. 4、解:设 的合力为 与的夹角为 则 ; 与的夹角为150°. 习题2.5 B组(P113) 1、解:设在水平方向的速度大小为 竖直方向的速度的大小为 则 . 设在时刻时的上升高度为 抛掷距离为 则 所以 最大高度为 最大投掷距离为. 2、解:设与的夹角为 合速度为 与的夹角为 行驶距离为. 则 . ∴. 所以当 即船垂直于对岸行驶时所用时间最短. 3、(1) 解:设 则. . 将绕点沿顺时针方向旋转到 相当于沿逆时针方向旋转到 于是 所以 解得 (2) 解:设曲线上任一点的坐标为 绕逆时针旋转后 点的坐标为 则 即 又因为 所以 化简得 第二章 复习参考题A组(P118) 1、(1)√; (2)√; (3)×; (4)×. 2、(1); (2); (3); (4); (5); (6). 3、 4、略解: 5、(1) ; (2) ; (3). 6、与共线. 证明:因为 所以. 所以与共线. 7、. 8、. 9、. 10、 11、证明: 所以. 12、. 13、 . 14、 第二章 复习参考题B组(P119) 1、(1); (2); (3); (4); (5); (6); (7). 2、证明:先证. . 因为 所以 于是. 再证. 由于 由可得 于是 所以. 【几何意义是矩形的两条对角线相等】 3、证明:先证 又 所以 所以 再证. 由得 即 所以 【几何意义为菱形的对角线互相垂直 如图所示】 4、 而 所以 5、证明:如图所示 由于 所以 所以 所以 同理可得 所以 同理可得 所以为正三角形. 6、连接. 由对称性可知 是的中位线 . 7、(1)实际前进速度大小为(千米/时) 沿与水流方向成60°的方向前进; (2)实际前进速度大小为千米/时 沿与水流方向成的方向前进. 8、解:因为 所以 所以 同理 所以点是的垂心. 9、(1); (2)垂直; (3)当时 ∥;当时 夹角的余弦; (4) 第三章 三角恒等变换 3.1两角和与差的正弦、余弦和正切公式 练习(P127) 1、. . 2、解:由 得; 所以. 3、解:由 是第二象限角 得; 所以. 4、解:由 得; 又由 得. 所以. 练习(P131) 1、(1); (2); (3); (4). 2、解:由 得; 所以. 3、解:由 是第三象限角 得; 所以. 4、解:. 5、(1)1; (2); (3)1; (4); (5)原式=; (6)原式=. 6、(1)原式=; (2)原式=; (3)原式=; (4)原式=. 7、解:由已知得 即 所以. 又是第三象限角 于是. 因此. 练习(P135) 1、解:因为 所以 又由 得 所以 2、解:由 得 所以 所以 3、解:由且可得 又由 得 所以. 4、解:由 得. 所以 所以 5、(1); (2); (3)原式=; (4)原式=. 习题3.1 A组(P137) 1、(1); (2); (3); (4). 2、解:由 得 所以. 3、解:由 得 又由 得 所以. 4、解:由 是锐角 得 因为是锐角 所以 又因为 所以 所以 5、解:由 得 又由 得 所以 6、(1); (2); (3). 7、解:由 得. 又由 是第三象限角 得. 所以 8、解:∵且为的内角 ∴ 当时 不合题意 舍去 ∴ ∴ 9、解:由 得. ∴. ∴. . 10、解:∵是的两个实数根. ∴ . ∴. 11、解:∵ ∴ 12、解:∵ ∴ ∴ 又∵ ∴ 13、(1); (2); (3); (4); (5); (6); (7); (8); (9); (10). 14、解:由 得 ∴ 15、解:由 得 ∴ 16、解:设 且 所以. ∴ 17、解: . 18、解: 即 又 所以 ∴ ∴ 19、(1); (2); (3); (4). 习题3.1 B组(P138) 1、略. 2、解:∵是的方程 即的两个实根 ∴ ∴ 由于 所以. 3、反应一般的规律的等式是(表述形式不唯一) (证明略) 本题是开放型问题 反映一般规律的等式的表述形式还可以是: 其中 等等 思考过程要求从角 三角函数种类 式子结构形式三个方面寻找共同特点 从而作出归纳. 对认识三角函数式特点有帮助 证明过程也会促进推理能力、运算能力的提高. 4、因为 则 即 所以 3.2简单的三角恒等变换 练习(P142) 1、略. 2、略. 3、略. 4、(1). 最小正周期为 递增区间为 最大值为; (2). 最小正周期为 递增区间为 最大值为3; (3). 最小正周期为 递增区间为 最大值为2. 习题3.2 A组( P143) 1、(1)略; (2)提示:左式通分后分子分母同乘以2; (3)略; (4)提示:用代替1 用代替; (5)略; (6)提示:用代替; (7)提示:用代替 用代替; (8)略. 2、由已知可有......① ......② (1)②×3-①×2可得 (2)把(1)所得的两边同除以得 注意:这里隐含与①、②之中 3、由已知可解得. 于是 ∴ 4、由已知可解得 于是. 5、 最小正周期是 递减区间为. 习题3.2 B组(P143) 1、略. 2、由于 所以 即 得 3、设存在锐角使 所以 又 又因为 所以 由此可解得 所以. 经检验 是符合题意的两锐角. 4、线段的中点的坐标为. 过作垂直于轴 交轴于 . 在中 . 在中 . 于是有 5、当时 ; 当时 此时有; 当时 此时有; 由此猜想 当时 6、(1) 其中 所以 的最大值为5 最小值为﹣5; (2) 其中 所以 的最大值为 最小值为; 第三章 复习参考题A组(P146) 1、. 提示: 2、. 提示: 3、1. 4、(1)提示:把公式变形; (2); (3)2; (4). 提示:利用(1)的恒等式. 5、(1)原式=; (2)原式= =; (3)原式= =; (4)原式= 6、(1); (2); (3). 提示:; (4). 7、由已知可求得 于是. 8、(1)左边= =右边 (2)左边= =右边 (3)左边= =右边 (4)左边= =右边 9、(1) 递减区间为 (2)最大值为 最小值为. 10、 (1)最小正周期是; (2)由得 所以当 即时 的最小值为. 取最小值时的集合为. 11、 (1)最小正周期是 最大值为; (2)在上的图象如右图: 12、. (1)由得; (2). 13、如图 设 则 所以 当 即时 的最小值为. 第三章 复习参考题B组(P147) 1、解法一:由 及 可解得 所以 . 解法二:由 得 所以. 又由 得. 因为 所以. 而当时 ; 当时 . 所以 即 所以 . 2、把两边分别平方得 把两边分别平方得 把所得两式相加 得 即 所以 3、由 可得 . 又 所以 于是. 所以 4、 由得 又 所以 所以 所以 5、把已知代入 得. 变形得 本题从对比已知条件和所证等式开始 可发现应消去已知条件中含的三角函数. 考虑 这两者又有什么关系?及得上解法. 5、6两题上述解法称为消去法 6、. 由 得 于是有. 解得. 的最小值为 此时的取值集合由 求得为 7、设 则 于是 又的周长为2 即 变形可得 于是. 又 所以 . 8、(1)由 可得 解得或(由 舍去) 所以 于是 (2)根据所给条件 可求得仅由表示的三角函数式的值 例如 等等. ?? ?? ?? ?? 数学必修四答案详解 与其到头来收拾残局,甚至做成蚀本生意,倒不如当时理智克制一些. -可编辑-- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 高中数学 必修 课后 习题 答案 详解 65843
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文