本科毕业论文---数学专业.doc
《本科毕业论文---数学专业.doc》由会员分享,可在线阅读,更多相关《本科毕业论文---数学专业.doc(23页珍藏版)》请在咨信网上搜索。
数学专业毕业论文 数学专业毕业论文 目 录 摘 要 I 1 绪论 1 1.1课题的研究意义 1 1.2国内外研究现状 1 1.3研究目标 2 2 关于独立分布的中心极限定理的探讨 3 2.1中心极限定理的提法 3 2.2独立同分布情形的两个定理. 3 2.2.1 林德伯格-----勒维中心极限定理 4 2.2.2隶莫弗——拉普拉斯定理 5 2.3独立不同分布情形下的中心极限定理 6 2.3.1林德贝格中心极限定理 6 2.3.2李雅普诺夫中心极限定理 11 2.4本章小结 12 3 中心极限定理在商业管理中的应用 13 3.1 水房拥挤问题 13 3.2设座问题 15 3.3盈利问题 16 3.4抽样检验问题 17 3.5供应问题 18 结 语 19 参考文献 20 附录 22 中心极限定理探讨及应用 摘 要:本文从随机变量序列的各种收敛与它们间的关系谈起,通过对概率论的经典定理—中心极限定理在独立同分布和不同分布两种情况下的结论作了比较系统的阐述,揭示了随机现象最根本的性质—平均结果的稳定性.经过对中心极限定理的讨论,给出了独立随机变量之和的分布可以用正态分布来表示的理论依据.同样中心极限定理的内容也从独立同分布与独立不同分布两个角度来进行讨论;最后给出了一些中心极限定理在数理统计、管理决策、近似计算、以及保险业等方面的应用,来进一步地阐明了中心极限定理在各分支学科中的重要作用和应用价值. 关键词:弱收敛;独立随机变量;特征函数;中心极限定理. 第 I 页 08级数学与应用数学专业毕业论文 1 绪论 1.1课题的研究意义 概率统计学是一门研究随机现象统计规律性[1]的数学学科,它的应用十分广泛,涉及自然科学、社会经济学科、工程技术及军事科学、农医学科、企业管理部门等.而大数定律和中心极限定理是概率论中最重要的内容之一,甚至可以说概率论的真正历史开始于极限定理的研究,在这以前概率论还仅局限于古典概率的直接计算,而且主要是赌博中的概率计算[2].极限定理最早的成果有:伯努利大数定律,棣莫佛一拉普拉斯定理和泊松定理,这些定理开辟了概率论中的重要研究方向—大数定律、中心极限定理及以正态分布和泊松分布为代表的无穷可分分布的研究.概率论中讨论随机变量序列部分和的分布渐近于正态分布的一类定理是概率论中最重要的一类定理,有广泛的实际应用背景.在自然界与生产中,一些现象受到许多相互独立的随机因素的影响,如果每个因素所产生的影响都很微小时,总的影响可以看作是服从正态分布的.中心极限定理就是从数学上证明了这一现象.最早的中心极限定理是讨论n重伯努利试验中,某事件A出现的次数渐近于正态分布的问题 .1716年前后,棣莫佛对n重伯努利试验中每次试验事件A出现的概率为1/2的情况进行了讨论,随后,拉普拉斯和李亚普诺夫等进行了推广和改进.自莱维在1919-1925年系统地建立了特征函数理论起,中心极限定理的研究得到了很快的发展,先后产生了普遍极限定理和局部极限定理等.无论是在概率论的发展史上还是在现代概率论中,极限定理的研究都占特别重要的地位,也是数理统计学的基石之一,其理论成果也比较完美.长期以来,对于极限定理的研究所形成的概率论分析方法,影响着概率论的发展.同时新的极限理论问题也在实际中不断产生.这样中心极限定理在概率论中占有重要的地位,同时极限定理的研究引起了现代概律论的发展,并且在统计分析和近似计算等方面具有一定的应用,所以中心极限定理的研究具有一定的理论和实际意义. 1.2国内外研究现状 中心极限定理作为概率论的重要内容,其理论成果相对比较完善.这方面的文章较多,它们的结果也比较完美.但是他们注重于研究单一的方向,而几个定律之间的关系和应用方面的较少.出于这种现状本文通过对独立条件下的中心极限定理做系统的分析,主要研究和讨论几个中心极限定理之间的关系以及中心极限定理所揭示的理论意义和他们的应用.同时对文中出现的定理和结论做系统的分析和证明,所以对教学和科研方面具有一定的参考价值. 1.3研究目标 通过对独立随机序列的中心极限定理做系统的分析,阐明中心极限定理它们之间的关系以及举例说明中心极限定理在实际问题中的应用为教学和科研供参考. 2 关于独立分布的中心极限定理的探讨 凡是在一定条件下断定随机变量之和的极限分布是正态分布的定理,在概率论中统称中心极限定理.具体一点说,中心极限定理回答的是(独立或弱相依)随机变量之和的极限分布在什么条件下是正态的.中心极限定理是揭示产生正态分布的源泉,是应用正态分布来解决各种实际问题的理论基础. 2.1中心极限定理的提法 直观上,如果一随机变量决定于大量(乃至无穷多个)随机.因素的总合,其中每个随机因素的单独作用微不足道,而且各因素的作用相对均匀,那么它就服从(或近似地服从)正态分布,下面我们将按严格的数学形式来表述这一直观. 在许多情形下,一随机变量可以表示为或近似地表示为大量独立随机变量之和, (a) 这里,每个直观上表示一种随机因素的效应,假如式(a)包含了决定的充分多的随机因素的效应(即充分大),则的分布就近似于X的分布.中心极限定理就是要说明,在什么条件下大量独立随机变量之和近似地服从正态分布,即,在什么条件下,当时,独立随机变量之和的极限分布是正态分布的. 中心极限定理的名称最早是由仆里耶(1920年)提出来的,中心极限定理的一般形式最早是由切比雪夫(1821年—1894年)提出来的下面我们介绍四个主要定理:1)林德伯格一勒维定理2)棣莫弗一拉普拉斯定理2)林德伯格定理3)李雅普诺夫定理.其中林德伯格定理是最一般的,其它情形可以看作它的推论. 2.2独立同分布情形的两个定理. 中心极限定理有多种不同的形式,它们的结论相同,区别仅在于加在各被加项上的条件不同.独立同分布随机变量列的中心极限定理,是中心极限定理最简单又最常用(特别在数理统计中)的一种形式,通常称做林德伯格----勒维定理.历史上最早的中心极限定理一棣莫弗一拉普拉斯(积分)定理是它的特殊情形. 设的方差,大于,令 (1) 我们说,随机变数列服从中心极限定理,如果关于均匀的有 (2) (2)表示:随机变量数的分布函数关于均匀的趋于正态分布的分布函数. 独立同分布的两个定理: 2.2.1 林德伯格-----勒维中心极限定理 设相互独立,服从同一分布,具有数学期望和方差:记 则对任意实数,有 (3) 证明 为证(1)式,只须证的分布函数列若收敛于标准正态分布.又由定理4.3.4[3],只须证的特征函数列收敛于标准正态分布的特征函数.为此设的特征函数为,则的特征函数为 又因为,所以有 , 于是特征函数有展开式 从而有 , 而正是分布的特征函数,定理得证. 例1某汽车销售点每天出售的汽车辆数服从参数为的泊松分布.若一年365天都经营汽车销售,且每天出售的汽车数是相互独立的,求一年中售出700辆以上汽车的概率. 解:设某汽车销售点每天出售的汽车辆数,则,为一年的总销量.由,知.利用林德贝格---勒维中心极限定理可得, 这表明一年中售出700辆以上汽车的概率为0.8665 2.2.2隶莫弗——拉普拉斯定理 在n重贝努里试验中,事件A在每次试验中出现的概率为p(0<p<1),为n次试验中事件A出现的次数,且记 且对任意实数,有 此定理由定理1马上就得出,也就是说定理2是定理1的推论. 例2 某保险公司多年的统计资料表明,在索赔户中被盗索赔户占20%,以表示在随意抽查的100个索赔户中因被盗向保险公司索赔的户数. (1)写出的分布列; (2)求被盗户不少于14户且不多于30户的概率近似值. 解:(1) 服从的二项分布,即 (2)利用隶莫弗---拉普拉斯中心极限定理,有 这表明被盗户不少于14户且不多于30户的概率近似值为0.9437. 2.3独立不同分布情形下的中心极限定理 对于独立同分布随机变量序列只要它们的方差有穷,中心极限定理就成立.而在实际问题中说诸具有独立性是常见的,但是很难说诸是“同分布”的随机变量,正如前面提到的测量误差的产生是由大量“微小的”相互独立的随机因素叠加而成的,即则间具有独立性,但不一定同分布,所以我们有必要讨论独立不同分布随机变量和的极限分布问题,目的是给出极限分布为正态分布的条件.林德伯格(Lideberg)于1922年找到了独立随机变量服从中心极限定理的最一般的条件,通常称做林德伯格条件. 2.3.1林德贝格中心极限定理 设独立随机变量序列 满足林德贝格条件,则对任意的,有 为证此,先证下列三个不等式:对任意实数,有 ; (4) (5) (6) 实际上,对上三式明显.设,则 ; ; 利用,可见(4)(5)(6)方都是的偶函数,故他们对也成立. 定理三的证明,先把记号简化.令 (7) 以、分别表的特征函数与分布函数,因而 (8) , (9) (10) 在这些记号下,由(6) 故林德贝格条件可化为:对任意, ; (11) 而(2)式化为:对均匀的有 (12) 如果在条件(11)下,能够证明的特征函数 亦即 (13) 那么根据定理3.2.3[4],(12)成立;再由定理3.1.3,(12)中收敛对还是均匀的,于是定理3得以证明.现在也就是只要证出(13)成立 则问题得证 为了证明(13),分两步. (甲)先证可展开为 , (14) 其中函数在任意有穷区间内趋于 实际上,由(9)中前一式 (15) 根据(5) . (16) 其中任意.由(11),对一切充分大的有;从而关于 及任何有限区间中的,同时有 因而对任意,均匀的有 . (17) 特别,当时,对一切充分大的,下式成立: (18) 因此,在中,有展开式 (19) 其中 由(18) ; 但由(16)中第一个不等式及(10) 故 由(17)可见当时,关于任意有穷区间中的均匀的有 (20) (乙)令 由(15)得 . (21) 如果能够证明:对任意有穷区间中的均匀的有 . (22) 那么以(21)代入(14)并联合(甲)中的结论即得证(13),而且(13)中的收敛对任意有穷区间内的均匀,从而定理得以完全证明. 今证(22),由(10) 对任意, 由(4)(5)得 由(10)可见:对,有 (23) 对任意,可选使 又由(11),存在正整数,使对此及,有 (24) 于是当时,对一切,有 2.3.2李雅普诺夫中心极限定理 如对独立随机变数列,存在常数,使当时有 (25) 则(2)对均匀的成立. 证.只要验证林德贝格条件满足,由(25) 例3 一份考卷由99个题目组成,并按由易到难顺序排列.某学生答对第1题的概率为0.99;答对第2题的概率为0.98;一般地,他答对第题的概率为.加入该学生回答各题目是相互独立的,并且要正确回答其中60个题目以上(包括60个)才算通过考试.试计算该学生通过考试的可能性多大? 解 设 于是相互独立,且服从不同的二点分布: 而我们要求的是 . 为使用中心极限定理,我们可以设想从开始的随机变量都与同分布.且相互独立.下面我们用来验证随机变量序列满足李雅普诺夫条件(25),因为 , , 于是 , 即满足李雅普诺夫条件(25),所以可以使用中心极限定理. 又因为 所以该学生通过考试的可能性为 . 由此看出:此学生通过考试的可能性很小,大约只有千分之五. 2.4本章小结 这一章从独随机变量之和的极限分布为正态分布的定理引入了中心极限定理的内容,可分为分独立同分布和不同分布两种情况下讨论随机变量的分布趋于正态分布的情况.由于极限定理的研究直接联系到大n场合的二项分布的计算,所以我们也通过一些例子来讨论二项分别的近似计算问题.最后通过举出反例,以及在相同条件下比较大数定律与中心极限定理,说明了中心极限定理在近似计算中更精确.至于中心极限定理名称的得来是由于随机变量和的分布收敛于正态分布的极限定理的研究在长达两个世纪的时间内成了概率论研究的中心课题,因此也得到了中心极限定理的名称. 3 中心极限定理在商业管理中的应用 3.1 水房拥挤问题 假设某高校有学生5000人,只有一个开水房,由于每天傍晚打开水的人较多,经常出现同学排长队的现象,为此校学生会特向学校后勤集团公司提议增设水龙头.假设后勤集团公司经过调查,发现每个学生在傍晚一般有1%的时间要占用一个水龙头,现有水龙头数量为45个,现在总务处遇到的问题是: (1)未新装水龙头前,拥挤的概率是多少? (2)需至少要装多少个水龙头,才能以95%以上的概率保证不拥挤? 解: (1)设同一时刻,5000个学生中占用水龙头的人数为,则 ~B(5000,0.01) 拥挤的概率是 直接计算相当麻烦,我们利用隶莫佛-拉普拉斯定理.已知n=5000,p=0.01,q=0.99, 故 从而 .怪不得同学们有不少的抱怨.拥挤的概率竟达到76.11%. (2)欲求m,使得 即 由于 即 查标准正态分布表,得 即 故需要装62个水龙头. 问题的变形: (3)需至少安装多少个水龙头,才能以99%以上的概率保证不拥挤? 解:欲求m,使得 即 由于 .76 即 查标准正态分布表,得 即 故需要装67个水龙头. (4)若条件中已有水龙头数量改为55个,其余的条件不变,1,2两问题结果如何? 解:(1). (2) 同上. (5)若条件中的每个学生占用由1%提高到1.5%,其余的条件不变,则(1),(2)两问题结果如何? 解:(1) 设同一时刻,5000个学生中占用水龙头的人数为,则 ~B(5000,0.015), 已知n=5000,p=0.015,q=0.985, 拥挤的概率是 拥挤的概率竟达到100%. (2) 欲求m,使得 即 由于 即 查标准正态分布表,得 即 故需要装90个水龙头. 3.2设座问题 甲、乙两戏院在竞争500名观众,假设每个观众完全随意地选择一个戏院,且观众之间选择戏院是彼此独立的,问每个戏院至少应该设多少个座位才能保证观众因缺少座位而离开的概率小于5%. 解: 由于两个戏院的情况相同,故只需考虑甲戏院即可.设甲戏院需设m个座位,设 则 若用X表示选择甲戏院的观众总数,则 问题化为求m使 即 因为 由隶莫佛-拉普拉斯中心极限定理 查标准正态分布表知 , 从而解得, 即每个戏院至少应该设269个座位. 3.3盈利问题 盈利问题[5]:假设一家保险公司有10000个人参加保险,每人每年付12元保险费,在一年内一个人死亡的概率为0.006,死亡时,家属可向保险公司领得1000元,问 (1)保险公司亏本的概率有多少? (2)保险公司一年的利润不少于40000元,60000元,80000元的概率各为多少? 解: 设为一年内死亡的人数,则,即 由德莫佛-拉普拉斯中心极限定理 (1) ≈7809 (2)设分别表示一年的利润不少于40000元,60000元,80000元的事件,则 3.4抽样检验问题 抽样检验问题[6]:某药厂断言,该厂生产的某药品对医治一种疑难的血液病治愈率为0.8.医院检验员任取100个服用此药的病人,如果其中多于75个治愈,就接受这一断言,否则就拒绝这一断言.(1)若实际上此药对这种病的治愈是0.8,问接受这一断言的概率是多少?(2)若实际上此药对这种病的治愈率是0.7,问接受这一断言的概率是多少? 解 : 引入随机变量 表示抽查的100个人中被治愈的人数,则 (1) 实际治愈率为0.8时,接受这一断言的概率为0.8944. (2) 实际治愈率为0.7时,接受这一断言的概率为0.1379. 3.5供应问题 假设某车间有200台车床独立地工作着,开工率各为0.6,开工时耗电各为1000瓦,问供电所至少要给该车间多少电力,才能使99.9%的概率保证这个车间不会因供电不足而影响生产? 解: 设任一时刻工作着的机床数为,则服从参数为,的二项分布,该时刻的耗电量为千瓦,如果用表示供电所给该车间的最少电力,则此题所求即为:取何值时,有 查表得 解之得 即只要给该车间141千瓦的电力,就能以99.9%的概率保证该车间不会因电力不足而影响生产. 结 语 概率论中讨论随机变量序列部分和的分布渐近于正态分布的一类定理.概率论中最重要的一类定理,有广泛的实际应用背景.在自然界与生产中,一些现象受到许多相互独立的随机因素的影响,如果每个因素所产生的影响都很微小时,总的影响可以看作是服从正态分布的.中心极限定理就是从数学上证明了这一现象.本文主要问题和研究方向,即系统的阐明两种分布的极限定理及进行详尽的证明,及对中心极限定理的简单应用,可以使读者轻松牢固的掌握中心极限定理.中心极限定理,是概率论中讨论随机变量和的分布以正态分布为极限的一组定理.这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件.中心极限定理是刻画有些即使原来并不服从正态分布的一些独立的随机变量,但它们的总和渐进地服从正态分布.本文通过实例介绍了中心极限定理在商业管理中的应用,化抽象的理论概念为身边的实际例子.利于大家对这一定理的理解及对数理统计方法的掌握.这是我们数理统计教学中要重视与探索的问题之一. 第 21 页 共 23页 参考文献 [1] 王梓坤.概率论基础及其应用[M].北京:科学出版社,1976.138-145. [2] 卯诗松.程依明.概率论与数理统计教程[M].北京:高等教育出版社,2004.129-118. [3] 刘光祖.概率论与应用数理统计[M].北京:高等教育出版社 ,2001.130. [4] 盛骤.概率论与数理统计习题全解指南[M]. 第四版.浙江:浙江大学,1990.120. [5] 孙荣恒.概率论和数理统计[M] .重庆:重庆大学出版社,2000.120-121. [6] 盛聚.概率论与数理统计习题全解指南[M]. 二 、三版.浙江:浙江大学,2002.121. [7] YS.Chow; H. Teieher.Probability Theory[M].1978.146-151. [8] 周概容.概率论与数理统计[M].北京:高等教育出版社,1984.125-126. [9] 朱学军.中心极限定理在管理中的简单应用问题研究[J].北京:高等教育出版社,1996.17-18. [10] 魏宗舒.概率论与数理统计教程[M].北京:高等教育出版社.1983.63. [11] (美)E·勒克斯著.概率论与数理统计(引论)[A].北京:人民 教育出版,1982.124-135. [12] 范恩贵.中心极限定理在抽样推断中的应用[N].张家口师专学报,1994.5.23(自然科学版). [13] 杨维权,邓集贤.概率统计教学参考书[M].北京:高等教育出版社,1996. 65-67. [14] 姜炳麟.概率与数理统计习题解析[M].北京:北京邮电大学出版社,2003 156-172. [15] W.费勒,胡迪鹤.林向清译.概率论及其应用(上册)[M].北京:科学出版社,1980. 126-128. [16] 丁正生.概率论与数理统计简明教程[M].北京:高等教育出版社,2005. 88-94. [17] 盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,1989. 140. 附录 林德贝格条件: 设是一个相互独立随机变量序列,它们具有有限的数学期望和方差: ,,., 其中是独立随机变量序列和. 则只要对任意的,有 .- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 本科毕业 论文 数学 专业
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【胜****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【胜****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【胜****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【胜****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文