高中数学必修三主要内容.doc
《高中数学必修三主要内容.doc》由会员分享,可在线阅读,更多相关《高中数学必修三主要内容.doc(31页珍藏版)》请在咨信网上搜索。
1、第一章 算法初步1.1 算法与程序图框1. 算法的含义:在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序。比如解方程的算法、函数求值的算法、作图的算法,等等。2. 例子:例1 任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判定。算法分析:根据质数的定义,很容易设计出下面的步骤:第一步:判断n是否等于2,若n=2,则n是质数;若n2,则执行第二步。第二步:依次从2至(n-1)检验是不是n的因数,即整除n的数,若有这样的数,则n不是质数;若没有这样的数,则n是质数。这是判断一个大于1的整数n是否为质数的最基本算法。例2 用二分法设计一
2、个求议程x22=0的近似根的算法。算法分析:回顾二分法解方程的过程,并假设所求近似根与准确解的差的绝对值不超过0.005,则不难设计出以下步骤:第一步:令f(x)=x22。因为f(1)0,所以设x1=1,x2=2。第二步:令m=(x1+x2)/2,判断f(m)是否为0,若则,则m为所长;若否,则继续判断f(x1)f(m)大于0还是小于0。第三步:若f(x1)f(m)0,则令x1=m;否则,令x2=m。第四步:判断|x1x2|max, 则max=b.S3 如果Cmax, 则max=c.S4 max就是a,b,c中的最大值。综合应用题例5 写出求1+2+3+4+5+6的一个算法。分析:可以按逐一相
3、加的程序进行,也可以利用公式1+2+n=进行,也可以根据加法运算律简化运算过程。解:算法1:S1:计算1+2得到3;S2:将第一步中的运算结果3与3相加得到6;S3:将第二步中的运算结果6与4相加得到10;S4:将第三步中的运算结果10与5相加得到15;S5:将第四步中的运算结果15与6相加得到21。算法2:S1:取n=6;S2:计算;S3:输出运算结果。算法3:S1:将原式变形为(1+6)+(2+5)+(3+4)=37;S2:计算37;S3:输出运算结果。小结:算法1是最原始的方法,最为繁琐,步骤较多,当加数较大时,比如1+2+3+10000,再用这种方法是行不通的;算法2与算法3都是比较简
4、单的算法,但比较而言,算法2最为简单,且易于在计算机上执行操作。学生做一做 求1357911的值,写出其算法。老师评一评 算法1;第一步,先求13,得到结果3;第二步,将第一步所得结果3再乘以5,得到结果15;第三步,再将15乘以7,得到结果105;第四步,再将105乘以9,得到945;第五步,再将945乘以11,得到10395,即是最后结果。算法2:用P表示被乘数,i表示乘数。S1 使P=1。S2 使i=3S3 使P=PiS4 使i=i+2S5 若i11,则返回到S3继续执行;否则算法结束。1、写出解一元二次方程ax2+bx+c=0(a0)的一个算法。2、写出求1至1000的正数中的3倍数的
5、一个算法(打印结果)1、解:算法如下S1 计算=b2-4acS2 如果0,则方程无解;否则x1=S3 输出计算结果x1,x2或无解信息。2、解:算法如下:S1 使i=1S2 i被3除,得余数rS3 如果r=0,则打印i,否则不打印S4 使i=i+1S5 若i1000,则返回到S2继续执行,否则算法结束。1、写出解不等式x2-2x-30的一个算法。解:第一步:x2-2x-3=0的两根是x1=3,x2=-1。第二步:由x2-2x-30可知不等式的解集为x | -1x0的不等式的解的步骤(为方便,我们设a0)如下:第一步:计算= ;第二步:若0,示出方程两根(设x1x2),则不等式解集为x | xx
6、1或xx2;第三步:若= 0,则不等式解集为x | xR且x;第四步:若a THENt=aa=bb=tEND IFIF ca THENt=aa=cc=tEND IFIF cb THENt=bb=cc=tEND IF PRINT a,b,cEND算法分析:用a,b,c表示输入的3个整数;为了节约变量,把它们重新排列后,仍用a,b,c表示,并使abc.具体操作步骤如下。第一步:输入3个整数a,b,c.第二步:将a与b比较,并把小者赋给b,大者赋给a.第三步:将a与c比较. 并把小者赋给c,大者赋给a,此时a已是三者中最大的。第四步:将b与c比较,并把小者赋给c,大者赋给b,此时a,b,c已按从大到
7、小的顺序排列好。第五步:按顺序输出a,b,c.(四)循环语句满足条件?循环体是否算法中的循环结构是由循环语句来实现的。对应于程序框图中的两种循环结构,一般程序设计语言中也有当型(WHILE型)和直到型(UNTIL型)两种语句结构。即WHILE语句和UNTIL语句。(1)WHILE语句的一般格式是:WHILE 条件循环体WEND其中循环体是由计算机反复执行的一组语句构成的。WHLIE后面的“条件”是用于控制计算机执行循环体或跳出循环体的。当计算机遇到WHILE语句时,先判断条件的真假,如果条件符合,就执行WHILE与WEND之间的循环体;然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过
8、程反复进行,直到某一次条件不符合为止。这时,计算机将不执行循环体,直接跳到WEND语句后,接着执行WEND之后的语句。因此,当型循环有时也称为“前测试型”循环。其对应的程序结构框图为:(如上右图)思考:直到型循环又称为“后测试型”循环,参照其直到型循环结构对应的程序框图,说说计算机是按怎样的顺序执行UNTIL语句的?(让学生模仿执行WHILE语句的表述) 从UNTIL型循环结构分析,计算机执行该语句时,先执行一次循环体,然后进行条件的判断,如果条件不满足,继续返回执行循环体,然后再进行条件的判断,这个过程反复进行,直到某一次条件满足时,不再执行循环体,跳到LOOP UNTIL语句后执行其他语句
9、,是先执行循环体后进行条件判断的循环语句。提问:通过对照,大家觉得WHILE型语句与UNTIL型语句之间有什么区别呢?(让学生表达自己的感受)区别:在WHILE语句中,是当条件满足时执行循环体,而在UNTIL语句中,是当条件不满足时执行循环体。【例题精析】例3:编写程序,计算自然数1+2+3+99+100的和。分析:这是一个累加问题。我们可以用WHILE型语句,也可以用UNTIL型语句。由此看来,解决问题的方法不是惟一的,当然程序的设计也是有多种的,只是程序简单与复杂的问题。i=1sum=0WHLIE i100PRINT sumEND WHILE型: UNTIL型: 1.3 算法案例辗转相除法
10、:1.辗转相除法例1 求两个正数8251和6105的最大公约数。(分析:8251与6105两数都比较大,而且没有明显的公约数,如能把它们都变小一点,根据已有的知识即可求出最大公约数)解:8251610512146显然8251的最大公约数也必是2146的约数,同样6105与2146的公约数也必是8251的约数,所以8251与6105的最大公约数也是6105与2146的最大公约数。6105214621813214618131333181333351483331482371483740则37为8251与6105的最大公约数。以上我们求最大公约数的方法就是辗转相除法。也叫欧几里德算法,它是由欧几里德在
11、公元前300年左右首先提出的。利用辗转相除法求最大公约数的步骤如下:第一步:用较大的数m除以较小的数n得到一个商q0和一个余数r0;第二步:若r00,则n为m,n的最大公约数;若r00,则用除数n除以余数r0得到一个商q1和一个余数r1;第三步:若r10,则r1为m,n的最大公约数;若r10,则用除数r0除以余数r1得到一个商q2和一个余数r2;依次计算直至rn0,此时所得到的rn1即为所求的最大公约数。练习:利用辗转相除法求两数4081与20723的最大公约数(答案:53)2.更相减损术我国早期也有解决求最大公约数问题的算法,就是更相减损术。更相减损术求最大公约数的步骤如下:可半者半之,不可
12、半者,副置分母子之数,以少减多,更相减损,求其等也,以等数约之。翻译出来为:第一步:任意给出两个正数;判断它们是否都是偶数。若是,用2约简;若不是,执行第二步。第二步:以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。例2 用更相减损术求98与63的最大公约数.解:由于63不是偶数,把98和63以大数减小数,并辗转相减,即:9863356335283528728721217141477所以,98与63的最大公约数是7。练习:用更相减损术求两个正数84与72的最大公约数。(答案:12)3.比较辗转相除法
13、与更相减损术的区别(1)都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。(2)从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到4. 辗转相除法与更相减损术计算的程序框图及程序利用辗转相除法与更相减损术的计算算法,我们可以设计出程序框图以及BSAIC程序来在计算机上实现辗转相除法与更相减损术求最大公约数,下面由同学们设计相应框图并相互之间检查框图与程序的正确性,并在计算机上验证自己的结果。(1)辗转相除法的程序框图及程序程序框图:程序:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 主要内容
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。