捷达轿车制动系统毕业设计说明书.doc
《捷达轿车制动系统毕业设计说明书.doc》由会员分享,可在线阅读,更多相关《捷达轿车制动系统毕业设计说明书.doc(53页珍藏版)》请在咨信网上搜索。
捷达轿车制动系统毕业设计说明书 ———————————————————————————————— 作者: ———————————————————————————————— 日期: 2 个人收集整理 勿做商业用途 解放CA1093汽车参数第一章 绪 论 1。1 课题研究目的和意义 从汽车诞生时起,车辆制动系统在车辆的安全方面就扮演着至关重要的角色.近年来,随着车辆技术的进步和汽车行驶速度的提高,这种重要性表现得越来越明显。它不仅是衡量汽车好坏的一个指标,重要的是它还关系到乘车人员的生命安全问题。在选购汽车方面客户也比较看重此项的好坏,所以研究制动系统对于开拓市场,增加汽车销量也有重要作用.汽车制动系统种类很多,形式多样。传统的制动系统结构型式主要有机械式、气动式、液压式、气-液混合式。它们的工作原理基本都一样,都是利用制动装置,用工作时产生的摩擦热来逐渐消耗车辆所具有的动能,以达到车辆制动减速,或直至停车的目的。捷达王CT作为轿车,要求制动系统制动平顺,制动距离更短,制动过程中避免因制动效能过高而导致的车轮抱死的情况,满足汽车的安全性和乘员舒适性,因此制动系统的良好设计有利于提高汽车的整体性能。 汽车制动系是汽车底盘上的一个重要系统,它是制约汽车运动的装置,使汽车以适当的减速度降速行驶直至停车.在下坡行驶时,使汽车保持适当的稳定车速。它还使汽车能可靠的停靠在原地或坡道上。汽车的制动性能直接影响汽车的行驶安全性。随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性要求越来越高,为保证人身和车辆的安全,必须为汽车配备十分可靠的制动系统。所以研究制动系统有着非常重要的意义. 1。2 课题研究现状及发展趋势 1)制动控制系统的历史 最原始的制动控制只是驾驶员操纵一组简单的机械装置向制动器施加作用力,这时的车辆的质量比较小,速度比较低,机械制动虽已满足车辆制动的需要,但随着汽车自质量的增加,助力装置对机械制动器来说已显得十分必要.这时,开始出现真空助力装置.1932年生产的质量为2860kg的凯迪拉克V16车四轮采用直径419.1mm的鼓式制动器,并有制动踏板控制的真空助力装置。林肯公司也于1932年推出V12轿车,该车采用通过四根软索控制真空加力器的鼓式制动器。 随着科学技术的发展及汽车工业的发展,尤其是军用车辆及军用技术的发展,车辆制动有了新的突破,液压制动是继机械制动后的又一重大革新。Duesenberg Eight车率先使用了轿车液压制动器。克莱斯勒的四轮液压制动器于1924年问世。通用和福特分别于1934年和1939年采用了液压制动技术。到20世纪50年代,液压助力制动器才成为现实. 20世纪80年代后期,随着电子技术的发展,世界汽车技术领域最显著的成就就是防抱制动系统(ABS)的实用和推广。ABS集微电子技术、精密加工技术、液压控制技术为一体,是机电一体化的高技术产品。它的安装大大提高了汽车的主动安全性和操纵性。防抱装置一般包括三部分:传感器、控制器(电子计算机)与压力调节器。传感器接受运动参数,如车轮角速度、角加速度、车速等传送给控制装置,控制装置进行计算并与规定的数值进行比较后,给压力调节器发出指令。 2)制动控制系统的现状 当考虑基本的制动功能量,液压操纵仍然是最可靠、最经济的方法。即使增加了防抱制动(ABS)功能后,传统的“油液制动系统"仍然占有优势地位。但是就复杂性和经济性而言,增加的牵引力控制、车辆稳定性控制和一些正在考虑用于“智能汽车”的新技术使基本的制动器显得微不足道。 传统的制动控制系统只做一样事情,即均匀分配油液压力。当制动踏板踏下时,主缸就将等量的油液送到通往每个制动器的管路,并通过一个比例阀使前后平衡。而ABS或其他一种制动干预系统则按照每个制动器的需要时对油液压力进行调节。 目前,车辆防抱制动控制系统(ABS)已发展成为成熟的产品,并在各种车辆上得到了广泛的应用,但是这些产品基本都是基于车轮加、减速门限及参考滑移率方法设计的。方法虽然简单实用,但是其调试比较困难,不同的车辆需要不同的匹配技术,在许多不同的道路上加以验证;从理论上来说,整个控制过程车轮滑移率不是保持在最佳滑移率上,并未达到最佳的制动效果。 滑移率控制的难点在于确定各种路况下的最佳滑移率,另一个难点是车辆速度的测量问题,它应是低成本可靠的技术,并最终能发展成为使用的产品.对以滑移率为目标的ABS而言,控制精度并不是十分突出的问题,并且达到高精度的控制也比较困难;因为路面及车辆运动状态的变化很大,多种干扰影响较大,所以重要的问题在于控制的稳定性,即系统鲁棒性,应保持在各种条件下不失控.防抱系统要求高可靠性,否则会导致人身伤亡及车辆损坏. 因此,发展鲁棒性的ABS控制系统成为关键。现在,多种鲁棒控制系统应用到ABS的控制逻辑中来。除传统的逻辑门限方法是以比较为目的外,增益调度PID控制、变结构控制和模糊控制是常用的鲁棒控制系统,是目前所采用的以滑移率为目标的连续控制系统。模糊控制法是基于经验规则的控制,与系统的模型无关,具有很好的鲁棒性和控制规则的灵活性,但调整控制参数比较困难,无理论而言,基本上是靠试凑的方法。然而对大多数基于目标值的控制而言,控制规律有一定的规律。 车轮的驱动打滑与制动抱死是很类似的问题。在汽车起动或加速时,因驱动力过大而使驱动轮高速旋转、超过摩擦极限而引起打滑。此时,车轮同样不具有足够的侧向力来保持车辆的稳定,车轮切向力也减少,影响加速性能。由此看出,防止车轮打滑与抱死都是要控制汽车的滑移率,所以在ABS的基础上发展了驱动防滑系统(ASR)。 ABS只有在极端情况下(车轮完全抱死)才会控制制动,在部分制动时,电子制动使可控制单个制动缸压力,因此反应时间缩短,确保在任一瞬间得到正确的制动压力。近几年电子技术及计算机控制技术的飞速发展为EBS的发展带来了机遇.德国自20世纪80年代以来率先发展了ABS/ASR系统并投入市场,在EBS的研究与发展过程中走到了世界的前列. 3)制动控制系统的发展 今天,ABS/ASR已经成为欧美和日本等发达国家汽车的标准设备。 车辆制动控制系统的发展主要是控制技术的发展。一方面是扩大控制范围、增加控制功能;另一方面是采用优化控制理论,实施伺服控制和高精度控制。 经过了一百多年的发展,汽车制动系统的形式已经基本固定下来。随着电子,特别是大规模、超大规模集成电路的发展,汽车制动系统的形式也将发生变化。如凯西—海斯(K-H)公司在一辆实验车上安装了一种电-液(EH)制动系统,该系统彻底改变了制动器的操作机理。通过采用4个比例阀和电力电子控制装置,K-H公司的EBM就能考虑到基本制动、ABS、牵引力控制、巡航控制制动干预等情况,而不需另外增加任何一种附加装置。EBM系统潜在的优点是比标准制动器能更加有效地分配基本制动力,从而使制动距离缩短5%。一种完全无油液、完全的电路制动BBW(Brake-By—Wire)的开发使传统的液压制动装置成为历史. 4) 全电路制动(BBW) BBW是未来制动控制系统的L发展方向。全电制动不同于传统的制动系统,因为其传递的是电,而不是液压油或压缩空气,可以省略许多管路和传感器,缩短制动反应时间.全电制动的结构如图2所示。其主要包含以下部分: (a)电制动器。其结构和液压制动器基本类似,有盘式和鼓式两种,作动器是电动机; (b)电制动控制单元(ECU)。接收制动踏板发出的信号,控制制动器制动;接收驻车制动信号,控制驻车制动;接收车轮传感器信号,识别车轮是否抱死、打滑等,控制车轮制动力,实现防抱死和驱动防滑。由于各种控制系统如卫星定位、导航系统,自动变速系统,无级转向系统,悬架系统等的控制系统与制动控制系统高度集成,所以ECU还得兼顾这些系统的控制; (c)轮速传感器.准确、可靠、及时地获得车轮的速度; (d)线束.给系统传递能源和电控制信号; (e)电源。为整个电制动系统提供能源。与其他系统共用.可以是各种电源,也包括再生能源。 从结构上可以看出这种全电路制动系统具有其他传统制动控制系统无法比拟的优点: (a)整个制动系统结构简单,省去了传统制动系统中的制动油箱、制动主缸、助力装置.液压阀、复杂的管路系统等部件,使整车质量降低; (b)制动响应时间短,提高制动性能; (c)无制动液,维护简单; (d)系统总成制造、装配、测试简单快捷,制动分总成为模块化结构; (e)采用电线连接,系统耐久性能良好; (f)易于改进,稍加改进就可以增加各种电控制功能。 全电制动控制系统是一个全新的系统,给制动控制系统带来了巨大的变革,为将来的车辆智能控制提供条件。但是,要想全面推广,还有不少问题需要解决: 电制动控制系统首先用在混合动力制动系统车辆上,采用液压制动和电制动两种制动系统。这种混合制动系统是全电制动系统的过渡方案.由于两套制动系统共存,使结构复杂,成本偏高。 随着技术的进步,上述的各种问题会逐步得到解决,全电制动控制系统会真正代替传统的以液压为主的制动控制系统。 5) 结论 综上所述,现代汽车制动控制技术正朝着电子制动控制方向发展。全电制动控制因其巨大的优越性,将取代传统的以液压为主的传统制动控制系统。同时,随着其他汽车电子技术特别是超大规模集成电路的发展,电子元件的成本及尺寸不断下降. 汽车电子制动控制系统将与其他汽车电子系统如汽车电子悬架系统、汽车主动式方向摆动稳定系统、电子导航系统、无人驾驶系统等融合在一起成为综合的汽车电子控制系统,未来的汽车中就不存在孤立的制动控制系统,各种控制单元集中在一个ECU中,并将逐渐代替常规的控制系统,实现车辆控制的智能化。 但是,汽车制动控制技术的发展受整个汽车工业发展的制约。有一个巨大的汽车现有及潜在的市场的吸引,各种先进的电子技术、生物技术、信息技术以及各种智能技术才不断应用到汽车制动控制系统中来.同时需要各种国际及国内的相关法规的健全,这样装备新的制动技术的汽车就会真正应用到汽车的批量生产中。 1.3 汽车制动系的设计要求 本设计研究的主要内容:设计完成汽车制动系统,包括制动系统的类型选择、总体布置形式,制动系统各零部件的结构设计和性能分析。 设计要求: (1)各项性能指标除应满足设计任务书的规定和国家要求、法规制定的有关要求外,也要考虑到我的制动系统应符合现在国内汽车市场的低成本和高性能的要求。 (2)具有足够的制动效能,包括行车制动效能和驻车制动效能。行车制动效能是由在一定的制动初速度下及最大踏板力下的制动减速器和制动距离两项指标来评定的。制动距离直接影响着汽车的行驶安全性。 (3)工作可靠。为此,设计两套系统:行车制动系统和驻车制动系统,且它们的驱动机构是独立的,而行车制动装置的制动驱动机构至少应有两套独立的管路,当其中一套失效时,另一套应保证汽车制动效能不低于正常值的30%;驻车制动装置应采用工作可靠的机械式制动驱动机构。 (4)制动效能热稳定性好。汽车的高速制动、短时间的频繁重复制动,尤其使下长坡时的连续制动,均会引起制动器的温升过快,温度过高。提高摩擦材料的高温摩擦稳定性,增大制动鼓、盘的热容量,改善其散热性或采用强制冷却装置,都是提高抗热衰退的措施。 (5)制动效能的水稳定性好。制动器摩擦表面浸水后,会因水的润滑作用而使摩擦副的摩擦系数急剧减小而发生所谓的“水衰退”现象。一般规定在出水后反复制动5~15次,即应恢复其制动效能.良好的摩擦材料的吸水率低,其摩擦性能恢复迅速.另外也应防止泥沙等进入制动器摩擦副工作表面,否则会使制动效能降低并加速磨损。 (6)制动时的汽车操纵稳定性好.即以任何速度制动,汽车均不应失去操纵性和方向稳定性。通过ABS来调节前后轮的制动油压来实现。为此,汽车前、后轮制动器的制动力矩应有适当的比例,最好能随各轴间载荷转移情况而变化;同一车轴上的左、右车轮制动器的制动力矩应相同。否则当前轮抱死而侧滑时,将失去操纵性;当后轮抱死而侧滑甩尾时,会失去方向稳定性;当左、右轮的制动力矩差值超过15%时,会在制动时发生汽车跑偏。 (7)制动踏板和手柄的位置和行程符合人—机工程学要求,即操作仪方便性好,操纵轻便、舒适,减少疲劳. (8)制动系的机件应使用寿命长,制造成本低;对摩擦材料的选择也应考虑到环保要求,应力求减小制动时飞散到大气中的有害于人体的石棉纤维。 (9)制动时不应产生振动和噪声。 (10)与悬架、转向装置不产生运动干涉,在车轮跳动或汽车转向时不会引起自行制动. (11)制动系中应有音响或光信号等警报装置,以便能及时发现制动驱动机件的故障和功能失效;制动系中应有必要的安全装置,在行驶中挂车一旦脱挂,亦应有安全装置驱使驻车制动将其停驻。 (12)能全天候使用。气温高时液压制动管路不应有气阻现象;气温低时,气制动管路不应出现结冰现象。 (13)作用滞后的时间要尽可能短,包括从制动踏板开始动作至达到给定制动效能水平所需的时间和从放开踏板至完全解除制动的时间. 第二章 制动系统方案论证分析与选择 2。1 制动器形式方案分析 汽车制动器几乎均为机械摩擦式,即利用旋转元件与固定元件两工作表面间的摩擦产生的制动力矩使汽车减速或停车.一般摩擦式制动器按其旋转元件的形状分为鼓式和盘式两大类. 2。1。1 鼓式制动器 鼓式制动器是最早形式的汽车制动器,当盘式制动器还没有出现前,它已经广泛用干各类汽车上。鼓式制动器又分为内张型鼓式制动器和外束型鼓式制动器两种结构型式。内张型鼓式制动器的摩擦元件是一对带有圆弧形摩擦蹄片的制动蹄,后者则安装在制动底板上,而制动底板则紧固在前桥的前梁或后桥桥壳半袖套管的凸缘上,其旋转的摩擦元件为制动鼓。车轮制动器的制动鼓均固定在轮鼓上。制动时,利用制动鼓的圆柱内表面与制动蹄摩擦路片的外表面作为一对摩擦表面在制动鼓上产生摩擦力矩,故又称为蹄式制动器。外束型鼓式制动器的固定摩擦元件是带有摩擦片且刚度较小的制动带,其旋转摩擦元件为制动鼓,并利用制动鼓的外因柱表面与制动带摩擦片的内圆弧面作为一对摩擦表面,产生摩擦力矩作用于制动鼓,故又称为带式制动器。在汽车制动系中,带式制动器曾仅用作一些汽车的中央制动器,但现代汽车已很少采用。所以内张型鼓式制动器通常简称为鼓式制动器,通常所说的鼓式制动器就是指这种内张型鼓式结构。鼓式制动器按蹄的类型分为: 1、 领从蹄式制动器 如图所示,若图上方的旋向箭头代表汽车前进时制动鼓的旋转方向(制动鼓正向旋转),则蹄1为领蹄,蹄2为从蹄。汽车倒车时制动鼓的旋转方向变为反向旋转,则相应地使领蹄与从蹄也就相互对调了。这种当制动鼓正、反方向旋转时总具有一个领蹄和一个从蹄的内张型鼓式制动器称为领从蹄式制动器。领蹄所受的摩擦力使蹄压得更紧,即摩擦力矩具有“增势”作用,故又称为增势蹄;而从蹄所受的摩擦力使蹄有离开制动鼓的趋势,即摩擦力矩具有“减势”作用,故又称为减势蹄。“增势"作用使领蹄所受的法向反力增大,而“减势”作用使从蹄所受的法向反力减小. 领从蹄式制动器的效能及稳定性均处于中等水平,但由于其在汽车前进与倒车时的制动性能不变,且结构简单,造价较低,也便于附装驻车制动机构,故这种结构仍广泛用于中、重型载货汽车的前、后轮制动器及轿车的后轮制动器。 2、 双领蹄式制动器 若在汽车前进时两制动蹄均为领蹄的制动器,则称为双领蹄式制动器。显然,当汽车倒车时这种制动器的两制动蹄又都变为从蹄故它又可称为单向双领蹄式制动器。如图2—5(c)所示,两制动蹄各用一个单活塞制动轮缸推动,两套制动蹄、制动轮缸等机件在制动底板上是以制动底板中心作对称布置的,因此,两蹄对制动鼓作用的合力恰好相互平衡,故属于平衡式制动器。 双领蹄式制动器有高的正向制动效能,但倒车时则变为双从蹄式,使制动效能大降.这种结构常用于中级轿车的前轮制动器,这是因为这类汽车前进制动时,前轴的动轴荷及 附着力大于后轴,而倒车时则相反。 3、 双向双领蹄式制动器 当制动鼓正向和反向旋转时,两制动助均为领蹄的制动器则称为双向双领蹄式制动器.它也属于平衡式制动器。由于双向双领蹄式制动器在汽车前进及倒车时的制动性能不变,因此广泛用于中、轻型载货汽车和部分轿车的前、后车轮,但用作后轮制动器时,则需另设中央制动器用于驻车制动。 4、 单向增力式制动器 单向增力式制动器如图所示两蹄下端以顶杆相连接,第二制动蹄支承在其上端制动底板上的支承销上。由于制动时两蹄的法向反力不能相互平衡,因此它居于一种非平衡式制动器.单向增力式制动器在汽车前进制动时的制动效能很高,且高于前述的各种制动器,但在倒车制动时,其制动效能却是最低的。因此,它仅用于少数轻、中型货车和轿车上作为前轮制动器。 5、 双向增力式制动器 将单向增力式制动器的单活塞式制动轮缸换用双活塞式制动轮缸,其上端的支承销也作为两蹄共用的,则成为双向增力式制动器。对双向增力式制动器来说,不论汽车前进制动或倒退制动,该制动器均为增力式制动器. 双向增力式制动器在大型高速轿车上用的较多,而且常常将其作为行车制动与驻车制动共用的制动器,但行车制动是由液压经制动轮缸产生制动蹄的张开力进行制动,而驻车制动则是用制动操纵手柄通过钢索拉绳及杠杆等机械操纵系统进行操纵.双向增力式制动器也广泛用作汽车的中央制动器,因为驻车制动要求制动器正向、反向的制动效能都很高,而且驻车制动若不用于应急制动时也不会产生高温,故其热衰退问题并不突出。 但由于结构问题使它在制动过程中散热和排水性能差,容易导致制动效率下降.因此,在轿车领域上己经逐步退出让位给盘式制动器。但由于成本比较低,仍然在一些经济型车中使用,主要用于制动负荷比较小的后轮和驻车制动。本次设计最终采用的是领从蹄式制动器。 2。1.2盘式制动器 盘式制动器按摩擦副中定位原件的结构不同可分为钳盘式和全盘式两大类. 1、钳盘式 钳盘式制动器按制动钳的结构型式又可分为定钳盘式制动器、浮钳盘式制动器等。 ①定钳盘式制动器:这种制动器中的制动钳固定不动,制动盘与车轮相联并在制动钳体开口槽中旋转。具有下列优点:除活塞和制动块外无其他滑动件,易于保证制动钳的刚度;结构及制造工艺与一般鼓式制动器相差不多,容易实现从鼓式制动器到盘式制动器的改革;能很好地适应多回路制动系的要求。 ②浮动盘式制动器:这种制动器具有以下优点:仅在盘的内侧有液压缸,故轴向尺寸小,制动器能进一步靠近轮毂;没有跨越制动盘的油道或油管加之液压缸冷却条件好,所以制动液汽化的可能性小;成本低;浮动钳的制动块可兼用于驻车制动. 2、全盘式 在全盘式制动器中,摩擦副的旋转元件及固定元件均为圆形盘,制动时各盘摩擦表面全部接触,其作用原理与摩擦式离合器相同。由于这种制动器散热条件较差,其应用远没有浮钳盘式制动器广泛。 通过对盘式、鼓式制动器的分析比较可以得出盘式制动器与鼓式制动器比较有如下均一些突出优点: (1)制动稳定性好。它的效能因素与摩擦系数关系的K-p曲线变化平衡,所以对摩擦系数的要求可以放宽,因而对制动时摩擦面间为温度、水的影响敏感度就低。所以在汽车高速行驶时均能保证制动的稳定性和可靠性. (2)盘式制动器制动时,汽车减速度与制动管路压力是线性关系,而鼓式制动器却是非线性关系。 (3)输出力矩平衡.而鼓式则平衡性差。 (4)制动盘的通风冷却较好,带通风孔的制动盘的散热效果尤佳,故热稳定性好,制动时所需踏板力也较小。 (5)车速对踏板力的影响较小。 综合以上优缺点最终确定本次设计采用前盘后鼓式。前盘选用浮动盘式制动器,后鼓采用领从蹄式制动器。 2.2 制动驱动机构的结构形式选择 根据制动力原的不同,制动驱动机构可分为简单制动、动力制动以及伺服制动三大类型。而力的传递方式又有机械式、液压式、气压式和气压-液压式的区别。 1 、简单制动系 简单制动系即人力制动系,是靠司机作用于制动塌板上或手柄上的力作为制动力原。而传力方式有、又有机械式和液压式两种。 机械式的靠杆系或钢丝绳传力,其结构简单,造价低廉,工作可靠,但机械效率低,因此仅用于中、小型汽车的驻车制动装置中。 液压式的简单制动系通常简称为液压制动系,用于行车制动装置。其优点是作用滞后时间短(o.1s-o.3s),工作压力大(可达10 MPa-12MPa),缸径尺寸小,可布置在制动器内部作为制动蹄的张开机构或制动块的压紧机构,使之结构简单、紧凑,质量小、造价低。但其有限的力传动比限制了它在汽车上的使用范围.另外,液压管路在过度受热时会形成气泡而影响传输,即产生所谓“汽阻”,使制动效能降低甚至失效;而当气温过低时(—25℃和更低时),由于制动液的粘度增大,使工作的可靠性降低,以及当有局部损坏时,使整个系统都不能继续工作.液压式简单制动系曾广泛用于轿车、轻型及以下的货车和部分中型货车上。但由于其操纵较沉重,不能适应现代汽车提高操纵轻便性的要求,故当前仅多用于微型汽车上,在轿车和轻型汽车亡已极少采用。 2 、动力制动系 动力制动系是以发动机动力形成的气压或液压势能作为汽车制动的全部力源进行制动,而司机作用于制动踏板或手柄上的力仅用于对制动回路中控制元件的操纵。在简单制动系中的踏板力与其行程间的反比例关系在动力制动系中便不复存在,因此,此处的踏板力较小且可有适当的踏板行程。 动力制动系有气压制动系、气顶液式制动系和全液压动力制动系3种。 1)、气压制动系 气压制动系是动力制动系最常见的型式,由于可获得较大的制动驱动力,且主车与被拖的挂车以及汽车列车之间制动驱动系统的连接装置结构简单、连接和断开均很方便,因此被广泛用于总质量为8t以上尤其是15t以上的载货汽车、越野汽车和客车上。但气压制动系必须采用空气压缩机、储气筒、制动阀等装置,使其结构复杂、笨重、轮廓尺寸大、造价高;管路中气压的产生和撤除均较慢,作用滞后时间较长(o.3s—o.9s),因此,当制动阀到制动气室和储气筒的距离较远时,有必要加设气动的第二级控制元件—-继动阀(即加速阀)以及快放阀;管路工作压力较低(一般为o.5MPa—o.7MPa),因而制动气室的直径大,只能置于制动器之外,再通过杆件及凸轮或楔块驱动制动蹄,使非簧载质量增大;另外,制动气室排气时也有较大噪声。 2)、气顶液式制动系 气顶液式制动系是动力制动系的另一种型式,即利用气压系统作为普通的液压制动系统主缸的驱动力源的一种制动驱动机构。它兼有液压制动和气压制动的主要优点.由于其气压系统的管路短,故作用滞后时间也较短。显然,其结构复杂、质量大、造价高,故主要用于重型汽车上,一部分总质量为9t—11t的中型汽车上也有所采用。 3)、全液压动力制动系 全液压动力制动系除具有一般液压制动系统的优点外,还具有操纵轻便、制动反应快、制动能力强、受气阻影响较小、易于采用制动力调节装置和防滑移装置,及可与动力转向、液压悬架、举升机构及其他辅助设备共用液压泵和储油罐等优点。但其结构复杂、精密件多,对系统的密封性要求也较高,故并未得到广泛应用,目前仅用于某些高级轿车、大型客车以及极少数的重型矿用自卸汽车上. 3 、伺服制动系 伺服制动系是在人力液压制动系的基础上加设一套出其他能源提供的助力装置。使人力与动力可兼用,即兼用人力和发动机动力作为制功能源的制动系。在正常情况下,其输出工作压力主要出动力伺服系统产生,而在动力伺服系统失效时,仍可全由人力驱动液压系统产生一定程度的制动力。因此,在中级以上的轿车及轻、中型客、货汽车上得到了广泛的应用。 按伺服系统能源的不同,又有真空伺服制动系、气压伺服制动系和液压伺服制动系之分。其伺服能源分别为真空能(负气压能)、气压能和液压能。 2。3 液压分路系统的形式的选择 为了提高制动驱动机构的工作可靠性,保证行车安全,制动驱动机构至少应有两套独立的系统,即应是双回路系统,也就是说应将汽车的全部行车制动器的液压或气压管路分成两个或更多个相互独立的回路,以便当一个回路发生故障失效时,其他完好的回路仍能可靠地工作。 1 、 II型回路 前、后轮制动管路各成独立的回路系统,即一轴对一轴的分路型式,简称II型。其特点是管路布置最为简单,可与传统的单轮缸(或单制动气室)鼓式制动器相配合,成本较低。这种分路布置方案在各类汽车上均有采用,但在货车上用得最广泛.这一分路方案总后轮制动管路失效,则一旦前轮制动抱死就会失去转弯制动能力。对于前轮驱动的轿车,当前轮管路失效而仅由后轮制动时,制动效能将明显降低并小于正常情况下的一半,另外,由于后桥负荷小于前轴,则过大的踏板力会使后轮抱死而导致汽车甩尾. 2、 X型回路 后轮制功管路呈对角连接的两个独立的回路系统,即前轴的一侧车轮制动器与后桥的对侧车轮制动器同属于一个回路,称交叉型,简称X型.其特点是结构也很简单,一回路失效时仍能保持50%的制动效能,并且制动力的分配系数和同步附着系数没有变化,保证了制动时与整车负荷的适应性。此时前、后各有一侧车轮有制动作用,使制动力不对称,导致前轮将朝制动起作用车轮的一侧绕主销转动,使汽车失去方向稳定性。因此,采用这种分路力案的汽车,其主销偏移距应取负值(至20 mm),这样,不平衡的制动力使车轮反向转动,改善了汽车的方向稳定性. 3 、其他类型回路 左、右前轮制动器的半数轮缸与全部后轮制动器轮缸构成一个独立的回路,而两前轮制动器的另半数轮缸构成另一回路,可看成是一轴半对半个轴的分路型式,简称KI型。 两个独立的问路分别为两侧前轮制动器的半数轮缸和一个后轮制动器所组成,即半个轴与一轮对另半个轴与另一轮的瑚式,简称LL型。 两个独立的回路均由每个前、后制动器的半数缸所组成,即前、后半个轴对前、后半个轴的分路型式,简称HH型。这种型式的双回路系统的制功效能最好。HI、LL、HH型的织构均较复杂。LL型与HH型在任一回路失效时,前、后制动力的比值均与正常情况下相同,且剩余的总制动力可达到正常值的50%左占.HL型单用回路,即一轴半时剩余制动力较大,但此时与LL型一样,在紧急制动时后轮极易先抱死。 综合以上各个管路的优缺点最终选择X型管路. 2.4液压制动主缸的设计方案 为了提高汽车的行驶安全性,根据交通法规的要求,一些轿车的行车制动装置均采用了双回路制动系统。双回路制动系统的制动主缸为串列双腔制动主缸,单腔制动主缸已被淘汰。 轿车制动主缸采用串列双腔制动主缸.如图2—3所示,该主缸相当于两个单腔制动主缸串联在一起而构成.储蓄罐中的油经每一腔的进油螺栓和各自旁通孔、补偿孔流入主缸的前、后腔。在主缸前、后工作腔内产生的油压,分别经各自得出油阀和各自的管路传到前、后制动器的轮缸。 主缸不制动时,前、后两工作腔内的活塞头部与皮碗正好位于前、后腔内各自得旁通孔和补偿孔之间。 当踩下制动踏板时,踏板传动机构通过制动推杆推动后腔活塞前移,到皮碗掩盖住旁通孔后,此腔油压升高。在液压和后腔弹簧力的作用下,推动前腔活塞前移,前腔压力也随之升高。当继续踩下制动踏板时,前、后腔的液压继续提高,使前、后制动器制动。 图2—3 制动主缸工作原理图 撤出踏板力后,制动踏板机构、主缸前、后腔活塞和轮缸活塞在各自的回位弹簧作用下回位,管路中的制动液在压力作用下推开回油阀流回主缸,于是解除制动。 若与前腔连接的制动管路损坏漏油时,则踩下制动踏板时,只有后腔中能建立液压,前腔中无压力。此时在液压差作用下,前腔活塞迅速前移到活塞前端顶到主缸缸体上。此后,后缸工作腔中的液压方能升高到制动所需的值.若与后腔连接的制动管路损坏漏油时,则踩下制动踏板时,起先只有后缸活塞前移,而不能推动前缸活塞,因后缸工作腔中不能建立液压。但在后腔活塞直接顶触前缸活塞时,前缸活塞前移,使前缸工作腔建立必要的液压而制动。 由此可见,采用这种主缸的双回路液压制动系,当制动系统中任一回路失效时,串联双腔制动主缸的另一腔仍能工作,只是所需踏板行程加大,导致汽车制动距离增长,制动力减小。大大提高了工作的可靠性。 2。5 本章小结 本章介绍了制动器、制动回路等的类型。并确定了本次制动系设计的基本结构。 第三章 制动系统设计计算 3.1 制动系统主要参数数值 3.1.1 相关主要技术参数 整车质量:空载:930kg,满载:1470kg 质心位置:a=1。2m b=1.27m 质心高度:空载:hg=0。58m,满载:hg=0.55m 轴距:L=2.471m 最高车速:190km/h 轮胎:185/60R14 85H 同步附着系数:=0。6 3。1。2 同步附着系数的分析 (1)当<时:制动时总是前轮先抱死,这是一种稳定工况,但丧失了转向能力; (2)当>时:制动时总是后轮先抱死,这时容易发生后轴侧滑而使汽车失去方向稳定性; (3)当=时:制动时汽车前、后轮同时抱死,是一种稳定工况,但也丧失了转向能力。 分析表明,汽车在同步附着系数为的路面上制动(前、后车轮同时抱死)时,其制动减速度为,即,为制动强度。而在其他附着系数的路面上制动时,达到前轮或后轮即将抱死的制动强度<这表明只有在=的路面上,地面的附着条件才可以得到充分利用. 根据相关资料查出轿车0。6,故取=0.6 3.2制动器有关计算 3.2。1确定前后轴制动力矩分配系数β 根据公式: (3-1) 得: 3.2.2制动器制动力矩的确定 由轮胎与路面附着系数所决定的前后轴最大附着力矩: (3—2) 式中:Φ——该车所能遇到的最大附着系数; q——制动强度; -—车轮有效半径; ——后轴最大制动力矩; G——汽车满载质量; L——汽车轴距; 其中q===0.669 (3—3) 故后轴==954。17Nm 后轮的制动力矩为=477。095Nmm 前轴= T==0.648/(1—0。648)954.17=1717。5Nm 前轮的制动力矩为1717。5/2=858。75Nmm 3。3 后轮制动器的结构参数与摩擦系数的选取 1、鼓式制动器尺寸参数 (1)制动鼓直径D 轮胎规格为185/60R14 85H 轮辋为14in 轮辋直径/in 12 13 14 15 16 制动鼓内径/mm 轿车 180 200 240 260 ———— 货车 220 240 260 300 320 查表得制动鼓内径D=240mm D=14 根据轿车D/在0。64~0.74之间选取 取D/=0。7 D=249mm, (2)、制动蹄摩擦衬片的包角β和宽度b 制动蹄摩擦衬片的包角β在β=~范围内选取。 根据单个制动器总的衬片米厂面积取100~200 b/D在0。16~0。26之间选取 取0。24 b=0。24mm (3)、摩擦衬片初始角的选取 根据=—(/2)= (4)、张开力P作用线至制动器中心的距离e 根据e=0。8R 得:e=0.8×124.5=99。6mm 制动蹄支撑销中心的坐标位置a与c 根据a=0。8R 得:a=0。8124。5=99。6mm (5)、摩擦片摩擦系数 选择摩擦片时,不仅希望其摩擦系数要高些,而且还要求其热稳定行好,受温度和压力的影响小。不宜单纯地追求摩擦材料的高摩擦系数,应提高对摩擦系数的稳定性和降低制动器对摩擦系数偏离正常值的敏感性的要求。在假设的理想条件下计算制动器的制动力矩,取f=0。3可使计算结果接近实际值。另外,在选择摩擦材料时,应尽量采用减少污染和对人体无害的材料. 所以选择摩擦系数f=0。3 2、前轮盘式制动器主要参数确定 (1)、制动盘直径D 制动盘的直径D希望尽量大些,这时制动盘的有效半径得以增大,但制动盘受轮辋直径的限制。通常为轮辋直径的70%~79%。取72% D=25.4×14×72%=256mm (2)、制动盘厚度选择 制动盘厚度直接影响制动盘质量和工作时的温升.为使质量不致太大,制动盘厚度应取小些;为了降低制动时的温升,制动盘厚度不宜过小。通常,实心制动盘厚度可取为10 mm~20 mm;只有通风孔道的制动盘的两丁作面之间的尺寸,即制动盘的厚度取为20 mm~50 mm,但多采用20 mm~30 mm. 参考同级别车型,取实心盘,厚度13mm (3)、摩擦衬块内半径与外半径 摩擦衬块的外半径R2与内半径R1的比值不大于1.5。若此比值偏大,工作时摩擦衬块外缘与内缘的圆周速度相差较大,则其磨损就会不均匀,接触面积将减小,最终会导致制动力矩变化大。参考同类车型取=88mm,=120mm。 (4)、摩擦衬块工作面积A 推荐根据制动摩擦衬块单位面积占有的汽车质量在1。6kg/~3.5 kg/内选取。 3。4 制动蹄摩擦面的压力分布规律及径向变形规律 由前面的分析可知,制动器摩擦材料的摩擦系数及所产生的摩擦力对制动蹄因数BF有很大影响。掌握制动蹄摩擦面上的压力分布规律,有助于正确分析制动器因数。但用分析方法精确计算沿蹄片长度方向上的压力分布规律比较困难,因为除了摩擦衬片有弹性变形外,制动蹄、制动鼓以及支承也会有弹性变形,但与摩擦衬片的变形量相比,则相对很小.故在通常的近似计算中只考虑衬片径向变形的影响,其他零件变形的影响较小,可忽略不计。即通常作以下一些假定。 (1) 制动鼓、制动蹄为绝对刚性体; (2) 在外力作用下,变形仅发生在摩擦衬片上; (3) 压力与变形符合虎克定律。 可根据图3—1来分析计算具有一个自由度的增势蹄摩擦衬片的径向变形规律和压力分布规律。此时摩擦衬片在张开力和摩擦力的作用下,绕支承销中心转动dg角。摩擦衬片表面任意点沿制动蹄转动的切线方向饿变形即为线段,其径向变形分量是线段在半径延长线上的投影,即线段.由于dg角很小,可以认为=90则所求的摩擦衬片的径向变形为 (3。1) 图3。1摩擦衬片的径向变形规律和压力分布 考虑到,则由等腰三角形可知 (3.2) 代入上式,得摩擦衬片的径向变形和压力分别为 (3。3) 通过上式可看出摩擦片的径向变形和压力都是关于张开角a的正弦函数. 3.5 制动蹄片上的制动力矩 在计算鼓式制动器时,必须建立制动蹄对制动鼓的压紧力与所产生的制动力矩之间的关系. 增势蹄产生的制动力矩可表达如下: (3。4) 式中:-摩擦系数(前面以选择0.3); —单元法向力的合力; —摩擦力的作用半径. 如图3-2求得力与张开力的关系式,写出制动蹄上力的平衡力方程式: (3.5) 图3。2制动蹄对制动鼓的压紧力关系 式中:—支承反力在轴上的投影; —轴与力的作用线之间的夹角. 对式(3。5)求解,得- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 捷达 轿车 制动 系统 毕业设计 说明书
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文