群同态与逆同态的几点探究--数学与应用数学-毕设论文.doc
《群同态与逆同态的几点探究--数学与应用数学-毕设论文.doc》由会员分享,可在线阅读,更多相关《群同态与逆同态的几点探究--数学与应用数学-毕设论文.doc(14页珍藏版)》请在咨信网上搜索。
1、分类号 O152 编 号 2013010616 毕业论文 题 目 群同态与逆同态的几点探究 学 院 数学与统计学院 专 业 数学与应用数学 姓 名 * 班级 学 号 研究类型 理论研究 指导教师 提交日期 2013.5.15 原创性声明本人郑重声明:本人所呈交的论文是在指导教师的指导下独立进行研究所取得的成果。学位论文中凡是引用他人已经发表或未经发表的成果、数据、观点等均已明确注明出处。除文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的科研成果。本声明的法律责任由本人承担。论文作者签名: 年 月 日 论文指导教师签名:群同态与逆同态的几点探究 摘 要:本文主要写了两方面的内
2、容,一方面是利用群同态基本定理的证明思路证明某些群的同构,另一方面本文从新的角度即用逆同态来研究群中元素之间的关系,证明了逆同态的几个相关性质及定理,探讨了逆同态与群同态的内在联系和区别.关键词:群同态;同构;群同态基本定理;逆同态.分类号:O152Several inquiries of the homomorphismand anti-homomorphicLI Qiaolian (School of Mathematics and Statistics,Tianshui Normal University,Tian Shui,741000,Gansu)Abstract: In this
3、paper,we talked about two questions.The first one ,some examples have been proved with the fundamental homomorphism theorem of group.The second one,several properties and theorems were given of the anti-homomorphism.As the same time,the relationship and differences between anti-homomorphism and homo
4、morphism in group were discussed.Key Words: homomorphism;isomorphism;the fundamental homomorphism theorem of group;anti-homomorphism.目录0引言11预备知识32主要结果42.1群同态基本定理的应用42.2 逆同态与群同态的相似性质52.3逆同态和群同态的联系与区别7参考文献10数学与统计学院2013届毕业论文0引言什么是群同态和逆同态设想有两位学生,一位中国学生,一位英国学生在一起做计算,当中国学生数“一,二,三,四”时,英国学生却说“one ,two,three
5、,four”。虽然他们说的是不同的语言,但我们知道,他们所做的是同一件事数数。同样,当中国学生在纸上写下“一加一等于二”,英国学生在纸上写下“one plus one equals two”时,虽然他们用的是不同的文字,但我们知道,他们也正在做同一件事情进行数的加法,并且计算的是同一算式,我们为什么知道他们做的是同一件事呢?那是因为,我们在中文与英文之间建立了一种一一对应关系,比如说“一”对应“one”,“二”对应“two”,“三”对应“three”,“四”对应“four”,以及“加”对应“plus”,“等于”对应“equal”等等,而且每一对应中的两个词表示的是同一概念。根据这个对应我们可以
6、把中文的句子统一的翻译为英文中的句子,不仅如此,我们还可以借助一种语言来完成原来要求在另一种语言下完成的工作,如此,一旦英国学生完成了算式“two plus three equals five”中国学生不用计算就可以知道“二加三等于五”,这就是说,上述对应关系不仅建立了中文的词与英文的词之间的联系,而且当我们用词组合成句子时,这种联系依然保持不变。两者的区别也仅仅在于对同一概念使用了不同的术语和记号,类似的情况也出现在群论中,经常会遇到这样一些群,他们表面上看起来是那样不同,他们的元素不同,运算也不同。但我们却可以在他们的元素之间建立一种一一对应的关系。而且这种对应关系还保持元素间的运算关系。
7、由于群的性质是由他的元素和元素之间的运算所唯一确定的,这样,借助于这种一一对应的关系,我们就可以把一个群中所证明的结论翻译为另一个群中对应的结论,而不必在这个群中另证一遍。换言之,这两个群有完全相同的结构,所不同的仅仅是表述他们的元素及运算它们的术语和记号,这样做的意义当然是十分明显的。怎样认识群同态和逆同态认识一件事物,通常有三种途径:一是有局部到整体,而是由整体到局部,三是从一事物同类事物的联系与区别中去了解事物,近世代数中也常常采用这样的研究方法,而其中的同态与同构则采用第三种方法。在数学上,数学对象之间的联系往往是通过某种特殊的映射来反映的,这些映射不但建立了两个数学对象的元素之间的联
8、系,而且也要能反映出这两个数学对象的某种结构上的联系,比如,线性代数中的线性映射就有这一特点,它既建立了两个线性空间的元素之间的对应关系,同时也保持了双方的某些运算性质,群同构的概念也具有这一特性。但是,群同构的概念对于讨论群之间的关系来说条件太强了,它首先要求群与群元素之间有一个一一对应的关系。因此我们可以说群同态是群同构的自然推广,通过群同态我们可了解一个群,商群以及它的同态象之间的密切联系,而这种联系,无论对于群论本身,还是对于群的应用,都是极为重要的。群同态的和逆同态意义 如果说两国之间有政治关系,经济关系等等许多关系,则对于两个群之间就有同态关系.单同态意味着甲群与乙群的一个子群一样
9、(同构),满同态说明乙群就是甲群的商群,非单非满的同态,则说甲群的一个商群与乙群的一个商群是一样的,这样的同态关系是群的仅有关系而子群和商群是这种关系仅涉及的两种语言。众所周知,群论在数论中起着何等重要的作用。群的同态与同构都是研究群与群之间关系的重要手段。同构映射是群之间保持运算的映射,存在同构映射的两个群可以看成同一个群,因为它们有相同的群结构。代数中最基本与最重要的课题就是搞清楚各种代数体系在同构意义下的分类。 而同态映射只要求保持运算,显然它比同构映射更灵活,它能研究两个不同构的群之间的联系。群同态基本定理告诉我们,一定找得到的一个不变子群,使得的性质和商群的完全一样,此定理是群论中最
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 同态 探究 数学 应用 论文
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【胜****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【胜****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。