2019高考全国各地数学卷文科解答题分类汇编-函数与导数.pdf
《2019高考全国各地数学卷文科解答题分类汇编-函数与导数.pdf》由会员分享,可在线阅读,更多相关《2019高考全国各地数学卷文科解答题分类汇编-函数与导数.pdf(19页珍藏版)》请在咨信网上搜索。
1、20192019 高考全国各地数学卷文科解答题分类汇编高考全国各地数学卷文科解答题分类汇编-函数与导数函数与导数1.天津文19、本小题总分值 14 分函数32()4361,f xxtxtxtxR,其中tR、当1t 时,求曲线()yf x在点(0,(0)f处的切线方程;当0t 时,求()f x的单调区间;证明:对任意的(0,),()tf x在区间(0,1)内均存在零点、【解析】19本小题主要考查导数的几何意义、利用导数研究函数的单调性、曲线的切线方程、函数的零点、解不等式等基础知识,考查运算能力及分类讨论的思想方法,总分值 14 分。解:当1t 时,322()436,(0)0,()1266f x
2、xxx ffxxx(0)6.f 所以曲线()yf x在点(0,(0)f处的切线方程为6.yx 解:22()1266fxxtxt,令()0fx,解得.2txtx 或因为0t,以下分两种情况讨论:1假设0,2tttx 则当变化时,(),()fxf x的变化情况如下表:x,2t,2tt,t()fx+-+()f x所以,()f x的单调递增区间是,;()2ttf x 的单调递减区间是,2tt。2假设0,2ttt 则,当x变化时,(),()fxf x的变化情况如下表:x,t,2tt,2t()fx+-+()f x所以,()f x的单调递增区间是,;()2ttf x 的单调递减区间是,.2tt证明:由可知,
3、当0t 时,()f x在0,2t内的单调递减,在,2t内单调递增,以下分两种情况讨论:1当1,22tt即时,()f x在0,1内单调递减,2(0)10,(1)643644230.ftftt 所以对任意2,),()tf x在区间0,1内均存在零点。2当01,022tt即时,()f x在0,2t内单调递减,在,12t内单调递增,假设33177(0,1,10.244tfttt 2(1)643643230.fttttt 所以(),12tf x在内存在零点。假设3377(1,2),110.244ttfttt (0)10ft 所以()0,2tf x在内存在零点。所以,对任意(0,2),()tf x在区间0
4、,1内均存在零点。综上,对任意(0,),()tf x在区间0,1内均存在零点。2.北京文18、本小题共 13 分函数()()xf xxk e.求()f x的单调区间;求()f x在区间0,1上的最小值.【解析】18 共 13 分解:.)1()(3ekxxf令 0 xf,得1 kx、)(xf与)(xf 的情况如下:xkk,1k),1(k)(xf 0+)(xf1ke所以,)(xf的单调递减区间是1,k;单调递增区间是),1(k当01k,即1k时,函数)(xf在0,1上单调递增,所以fx在区间0,1上的最小值为;)0(kf当21,110kk即时,由知()0,1f xk 在上单调递减,在(1,1k 上
5、单调递增,所以()f x在区间0,1上的最小值为1(1)kf ke;当1,2ktk 即时,函数()f x在0,1上单调递减,所以()f x在区间0,1上的最小值为(1)(1).fk e3.(全国大纲文)21、本小题总分值 l2 分 注意:在试题卷上作答无效函数32()3(36)124f xxaxa xaaRI证明:曲线()0yf xx在处的切线过点2,2;II假设0()f xxx在处取得极小值,0(1,3)x,求 a 的取值范围。【解析】21、解:I2()3636.fxxaxa 2 分由(0)124,(0)36fafa得曲线()0yf xx在处的切线方程为由此知曲线()0yf xx在处的切线过
6、点2,26 分II由2()021 20.fxxaxa 得i当2121,()af x 时没有极小值;ii当2121,()0aafx 或时由得221221,21,xaaaxaaa 故02.xx由题设知21213.aaa 当21a 时,不等式21213aaa 无解。当21a 时,解不等式25121321.2aaaa 得综合i ii得 a 的取值范围是5(,21).212 分4.全国新文21、本小题总分值 12 分函数ln()1axbf xxx,曲线()yf x在点(1,(1)f处的切线方程为230 xy、I求 a,b 的值;II证明:当 x0,且1x 时,ln()1xf xx、【解析】21解:221
7、(ln)()(1)xxbxfxxx由于直线230 xy的斜率为12,且过点(1,1),故(1)1,1(1),2ff 即1,1,22bab 解得1a,1b。由知ln1f()1xxxx,所以)1ln2(111ln)(22xxxxxxxf考虑函数()2lnh xxxx12(0)x,那么22222)1()1(22)(xxxxxxxh所以当1x时,,0)1(,0)(hxh而故当)1,0(x时,;0)(11,0)(2xhxxh可得当),1(x时,;0)(11,0)(2xhxxh可得从而当.1ln)(,01ln)(,1,0 xxxfxxxfxx即且5.辽宁文20、本小题总分值 12 分设函数)(xf=x+a
8、x2+blnx,曲线y=)(xf过P1,0,且在P点处的切斜线率为 2、I求a,b的值;II证明:)(xf2x-2、【解析】20、解:I()12.bfxaxx 2 分由条件得(1)0,10,(1)2.122.fafab即解得1,3.ab 5 分II()(0,)f x的定义域为,由I知2()3ln.f xxxx设2()()(22)23ln,g xf xxxxx那么3(1)(23)()12.xxg xxxx 01,()0;1,()0.()(0,1),(1,).xg xxg xg x当时当时所以在单调增加在单调减少而(1)0,0,()0,()22.gxg xf xx故当时即12 分6.江西文20、本
9、小题总分值 13 分设321().3f xxmxnx1如果()()23x2g xfxx 在处取得最小值-5,求f(x)的解析式;2如果mn10(m,nN),f(x)的单调递减区间的长度是正整数,试求 m 和 n 的值;注;区间a,b的长度为 b-a【解析】20、本小题总分值 13 分解:1由题得222()2(1)(3)(1)(3)(1)g xxmxnxmnm()2g xx 在处取得最小值-5所以212(3)(1)5mnm ,即3,2mn即得所要求的解析式为321()32.3f xxxx2因为2()2,()fxxmxnf x且的单调递减区间的长度为正整数,故()0fx 一定有两个不同的根,从而2
10、2440mnmn 即,不妨设为21221,|2x xxxmn则为正整数,故2m 时才可能有符合条件的 m,n当 m=2 时,只有 n=3 符合要求当 m=3 时,只有 n=5 符合要求当4m 时,没有符合要求的 n综上所述,只有 m=2,n=3 或 m=3,n=5 满足上述要求。7.山东文21、本小题总分值 12 分某企业拟建造如下图的容器不计厚度,长度单位:米,其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为803立方米,且2lr、假设该容器的建造费用仅与其表面积有关、圆柱形部分每平方米建造费用为 3 千元,半球形部分每平方米建造费用为(3)c c、设该容器的建造费用为y
11、千元、写出y关于的函数表达式,并求该函数的定义域;求该容器的建造费用最小时的、【解析】21、解:I设容器的容积为 V,由题意知23480,33Vr lrV又故322248044 203()333Vrlrrrrr由于2lr因此02.r所以建造费用2224 202342()34,3yrlr crrr cr 因此21604(2),02.ycrrrII由I得3221608(2)208(2)(),02.2cycrrrrrc由于3,20,cc所以当3320200,.22rrcc时令320,2mc则所以2228(2)()().cyrm rrmmr1当9022mc即时,当r=m 时,y=0;当r(0,m)时,
12、y 0.所以rm是函数 y 的极小值点,也是最小值点。2当2m 即932c时,当(0,2),0,ry时函数单调递减,所以 r=2 是函数 y 的最小值点,综上所述,当932c时,建造费用最小时2;r 当92c 时,建造费用最小时320.2rc8.陕西文21、本小题总分值 14 分设()ln.()()()f xx g xf xfx。求()g x的单调区间和最小值;讨论()g x与1()gx的大小关系;求a的取值范围,使得()()g ag x1a对任意x0 成立。【解析】21、解由题设知1()ln,()lnf xx g xxx,21(),xg xx令()g x0 得x=1,当x0,1时,()g x
13、0,故0,1是()g x的单调减区间。当x1,+时,()g x0,故1,+是()g x的单调递增区间,因此,x=1是()g x的唯一值点,且为极小值点,从而是最小值点,所以最小值为(1)1.gII1()lnxgxx 设11()()()2lnh xg xgxxxx,那么22(1)()xh xx,当1x 时,(1)0h即1()()g xgx,当(0,1)(1,)x时(1)0h,因此,()h x在(0,)内单调递减,当01x时,()(1)0h xh即1()().g xgx当x1,()(1)0h xh时1()()g xgx即III由I知()g x的最小值为 1,所以,1()()g ag xa,对任意0
14、 x,成立1()1,g aa 即ln1,a 从而得0ae。9.上海文21、14 分函数()23xxf xab,其中常数,a b满足0ab。1假设0ab,判断函数()f x的单调性;2假设0ab,求(1)()f xf x时x折取值范围。【解析】21、解:当0,0ab时,任意1212,x xR xx,那么121212()()(22)(33)xxxxf xf xab121222,0(22)0 xxxxaa,121233,0(33)0 xxxxbb,12()()0f xf x,函数()f x在R上是增函数。当0,0ab时,同理,函数()f x在R上是减函数。(1)()2230 xxf xf xab当0
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 高考 全国各地 数学 文科 解答 分类 汇编 函数 导数 编辑 修改 word
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。