八下数学期末模拟测试(难度题)+参考答案.docx
《八下数学期末模拟测试(难度题)+参考答案.docx》由会员分享,可在线阅读,更多相关《八下数学期末模拟测试(难度题)+参考答案.docx(15页珍藏版)》请在咨信网上搜索。
______________________________________________________________________________________________________________ 2018年八年级下学期期末模拟考试·数学试题(难) 一.选择题(每题3分,共30分) 1.下列计算,正确的是 ( ) A. a3×a2=a6 B. a3÷a=a3 C. a2+a2=a4 D. (a2)2=a4 2.定义[x]表示不超过实数x的最大整数,如[1.8]=1,[-1.4]=-2, [-3]=-3.函数y=[x]的图象如图所示,则方程[x]=12x2的解为 ( ) A. 0或2 B. 0或2 C. 1或-2 D. 2或-2 2题图 4题图 6题图 7题图 3.下列四个图形中,是轴对称图形,但不是中心对称图形的是 ( ) A. B. C. D. 4.如图,平行四边形 ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足E,AB=3,AC=2,BD=4,则AE的长为 ( ) A. 32 B. 32 C. 217 D. 2217 5.一次函数y=kx+b(k≠0)的图象经过A(-1,-4),B(2,2)两点,P为反比例函数y=kbx图象上一动点,O为坐标原点,过点P作y轴的垂线,垂足为C,则△PCO的面积为 ( ) A. 2 B. 4 C. 8 D. 不确定 6.如图,在Rt△ABC中,∠BAC=90°.将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A'B'C,点A在边B'C上,则∠B'的大小为( ) A. 42° B. 48° C. 52° D. 58° 7.如图,在平面直角坐标系中,点P(1,4),Q(m,n)在函数y=kx(x>0)的图象上.当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C,D.QD交PA于点E. 随着m的增大,四边形ACQE的面积( ) A. 减小 B. 增大 C. 先减小后增大 D. 先增大后减小 8.某车间20名工人日加工零件数如下表所示: 日加工零件数 4 5 6 7 8 人数 2 6 5 4 3 这些工人日加工零件数的众数、中位数、平均数分别是( ) A. 5,6,5 B. 5,5,6 C. 6,5,6 D. 5,6,6 9.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为( ) A. 7 B. 8 C. 9 D. 10 10.如果关于x的分式方程ax+1-3=1-xx+1有负分数解,且关于x的不等式组2(a-x)≥-x-4,3x+42<x+1的解集为x<-2,那么符合条件的所有整数a的积是( ) A. -3 B. 0 C. 3 D. 9 二.填空题(每题3分,共28分) 11.在-12,0,-1,1这四个数中,最小的数是 . 12.如图,在正方形ABCD中,AB=6,点E在边CD上,DE=13DC,连接AE,将△ADE沿AE翻折,点D落在点F处,点O是对角线BD的中点,连接OF并延长OF交CD于点G,连接BF,BG,则△BFG的周长是 . 12题图 13题图 16题图 13.为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第 ____________秒. 14.把多项式ax2+2a2x+a3分解因式的结果是________. 15.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球. 每次摇匀后随机摸出一个球,记下颜色后再放回袋中.通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球 个. 16.如图,在平面直角坐标系中,一条直线与反比例函数y=8x(x>0)的图象交于两点A,B,与x轴交于点C,且点B是AC的中点,分别过两点A,B作x轴的平行线,与反比例函数y=2x(x>0)的图象交于两点D,E,连接DE,则四边形ABED的面积为 . 17.如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC于点E,将△BCE绕点C顺时针旋转90°得到△DCF,若CE=1 cm,则BF= cm. 17题图 18题图 18.如图,已知平行四边形OABC的顶点A,C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为 . 三.解答题(共66分) 19.解方程和不等式组:(6分) (1)x2x-5+55-2x=1; (2)5x-10≤0,x+3>-2x. 20.先化简,再求值:(a-b)2+b(3a-b)-a2,其中a=2,b=6.(8分) 21.某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如下不完整的频数分布表及频数分布直方图.(6分) 根据以上信息完成下列问题: (1)直接写出频数分布表中a的值; (2)补全频数分布直方图; (3)若全校共有学生1 500名,估计该校最喜爱围棋的学生大约有多少人? 22.如图,在四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上.(8分) (1)给出以下条件:①OB=OD,②∠1=∠2,③OE=OF.请你从中选取两个条件证明△BEO≌△DFO; (2)在第1问中你所选条件的前提下,添加AE=CF.求证:四边形ABCD是平行四边形. 23.某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系的图象如图①中的点状图所示(5月及以后每月的销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系的图象如图②中线段AB所示.(3+3+4=10分) 图① 图② (1)求经销成本p(万元)与销售额y(万元)之间的函数关系式; (2)分别求该公司3月、4月的利润; (3)问:把3月作为第1个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额-经销成本) 24.如图,△ABC中,AB=AC,E在BA的延长线上,AD平分∠CAE.(8分) (1)求证:AD∥BC; (2)过点C作CG⊥AD于点F,交AE于点G.若AF=4,求BC的长. 25.已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA,EC.(3+3+4=10分) (1)如图①,若点P在线段AB的延长线上,求证:EA=EC; (2)若点P在线段AB上. ①如图②,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由; ②如图③,设AB=a,BP=b,当EP平分∠AEC时,求a∶b及∠AEC的度数. 26.已知:在菱形ABCD中,∠ABC=60°,对角线AC,BD相交于点O,点E是线段BD上一动点(不与点B,D重合),连接AE,以AE为边在AE的右侧作菱形AEFG,且∠AEF=60°.(12分) (1)如图1,若点F落在线段BD上,则线段FE与线段FD的数量关系为 . (2)如图2,若点F不在线段BD上,第1问中的结论是否成立?若成立,请证明;若不成立,请说明理由. (3)若点C,E,G三点在同一条直线上,请直接写出线段BE与线段BD的数量关系. 参考答案 1. 【答案】D【解析】a3×a2=a3+2=a5,故A错误;a3÷a=a3-1=a2,故B错误;a2+a2=2a2,故C错误;(a2)2=a2×2=a4,D正确,故选D. 2. 【答案】A【解析】由函数图象可知,当-2≤x<-1时,y=-2,即有[x]=-2,此时方程无解;当-1≤x<0时,y=-1,即有[x]=-1,此时方程无解;当0≤x<1时,y=0,即有[x]=0,此时方程为0=12x2,解得x=0;当1≤x<2时,y=1,即有[x]=1,此时方程为1=12x2,解得x=2或x=-2(不在x的取值范围内,舍去).综上可知,方程的解为0或2.故选A. 3. 【答案】A【解析】根据轴对称图形和中心对称图形的概念可知,B,C既是轴对称图形,又是中心对称图形;D是中心对称图形,但不是轴对称图形;只有A是轴对称图形,但不是中心对称图形,故选A. 4. 【答案】D【解析】∵四边形ABCD为平行四边形,∴OA=12AC=1,OB=12BD=2.在△AOB中,OA2+AB2=1+3=4=OB2,∴∠OAB=90°,∴BC=AB2+AC2=(3)2+22=7. ∵AE⊥BC, ∠OAB=90°,∴AB·AC=BC·AE,∴AE=AB·ACBC=237=2217,故选D. 5. 【答案】A【解析】把A(-1,-4),B(2,2)代入一次函数y=kx+b(k≠0),得-k+b=-4,2k+b=2,解得k=2,b=-2.∴kb=-4,即反比例函数的关系式为:y=-4x.设P(x0,y0),则y0=-4x0,且S△PCO=12|x0||y0|=12|x0y0|=12×4=2. 6. 【答案】A【解析】由旋转可知,∠BCA=48°,∴∠B'=∠B=90°-48°=42°,故选A. 7. 【答案】B【解析】∵点P(1,4)在函数y=kx(x>0)的图象上,∴k=4,又点Q(m,n)也在函数图象上,∴mn=4,QE=m-1,QC=n,∴四边形ACQE的面积为:(m-1)n=mn-n=-n+4,是一次函数,当m增大时,n减小,-n+4增大,即四边形ACQE的面积增大,故选B. 8. 【答案】D【解析】众数是5,中位数是(6+6)÷2=6,平均数=(4×2+5×6+6×5+7×4+8×3)÷20=6,故选D. 9. 【答案】B【解析】∵∠ABC=90°,∴AC=AB2+BC2=82+62=10.∵DE是△ABC的中位线,∴DE=12BC=3,EC=12AC=5,DE∥BC.∴∠EFC=∠FCM. ∵∠ECF=∠FCM,∴∠ECF=∠EFC,∴EF=EC=5.∴DF=DE+EF=3+5=8.故选B. 10. 【答案】D【解析】把a看作已知数表示出不等式组和分式方程的解,根据已知解集和分式方程的解为负数确定出a的范围,将a的整数解代入分式方程的解中,检验分式方程解为负分数时所有a的值,即可求解.2(a-x)≥-x-4①3x+42<x+1②, 由①得x≤2a+4,由②得x<-2, 由不等式组的解集为x<-2,得到2a+4≥-2,即a≥-3. 解分式方程ax+1-3=1-xx+1,得x=a-42③, 由分式方程有负分数解,得到a-42<0,即a<4.所以-3≤a<4. 把a=-3代入③得x=-72,符合题意; 把a=-2代入③得x=-3,不合题意; 把a=-1代入③得x=-52,符合题意; 把a=0代入③得x=-2,不合题意; 把a=1代入③得x=-32,符合题意; 把a=2代入③得x=-1,不合题意; 把a=3代入③得x=-12,符合题意; ∴符合条件的整数a的取值为-3,-1,1,3,积为9,故选D. 11. 【答案】-1 【解析】先根据正数>0>负数,得出只需比较两个负数的大小,再根据“两个负数比较大小,绝对值大的反而小” 即可得出最小的数为-1. 12. 【答案】1255+12510 【解析】如图,延长EF交BC于点M,连接AM,OM,作FN⊥CD于点N,FR⊥BC于点R,GH⊥OM于点H交FR于点T. 在Rt△AMF和Rt△AMB中, AM=AMAF=AB,∴△AMF≌△AMB,∴BM=MF,设BM=MF=x, 在Rt△EMC中,∵EM2=EC2+MC2,∴(2+x)2=(6-x)2+42,∴x=3,∴BM=MC=3,∵O是BD的中点,∴OM=12CD=3,OM⊥BC,∵FR∥EC,∴FREC=MFME,∴FR4=35,∴FR=125, 设CG=y,则FT=125-y,OH=3-y, ∵FT∥OH,∴FTOH=TGGH=RCCM=EFEM=25,∴125-y3-y=25,TG=3×25=65,∴y=2,∴CG=2,NG=CN-CG=FR-CG=25, 在Rt△FNG中,FG=FN2+NG2=TG2+NG2=652+252=2105, 在Rt△BCG中,BG=BC2+CG2=210, ∵AB=AF,MB=MF,∴AM⊥BF, ∵12AM·BF=2×12×AB·BM,∴BF=1255, ∴△BFG的周长=1255+210+2105=1255+12510. 13. 【答案】120 【解析】设直线OA的解析式为y=kx,代入A(200,800)得800=200k,解得k=4,故直线OA的解析式为y=4x, 设BC的解析式为y1=k1x+b,由题意,得360=60k1+b540=150k1+b,解得k1=2b=240, ∴BC的解析式为y1=2x+240, 当y=y1,即4x=2x+240时,解得x=120. 则她们第一次相遇的时间是起跑后的第120秒. 14. 【答案】a(x+a)2 【解析】先提公因式,再用完全平方公式.ax2+2a2x+a3=a(x2+2ax+a2)=a(x+a)2. 15. 【答案】8 【解析】根据题意得:x8+4+x=0.4,解得:x=8,经检验x=8是原方程的解,故答案是8. 16. 【答案】92 【解析】本题考查相似三角形的判定与性质,反比例函数图象上点的坐标特征,四边形的面积计算.设A(a,b),借助函数解析式,把B,D,E三点坐标分别用a,b表示出来,最后用a,b表示出四边形ABED的面积,将ab=8代入计算即可.分别过A,B作AM⊥x轴,BN⊥x轴,垂足为M,N,∴△AMC∽△BNC.∵B为AC中点,∴BN=12AM=12b,根据反比例函数上点的横、纵坐标乘积不变性,得ON=2a,MN=NC=a,B2a,12b.∵AD∥x轴,BE∥x轴,且D,E在y=2x(x>0)上,∴D2b,b,E4b,12b,∴S四边形ABED=a-2b+2a-4b×12b×12=34ab-32=34×8-32=92. 17. 【答案】2+2 【解析】本题考查角平分线的性质和正方形的性质.作EG⊥BD于G,∵BE平分∠DBC,∠EGB=∠BCE=90°,∴EG=EC=1cm.∵△DEG为等腰直角三角形,∴DE=2EG=2 cm.∴CD=(1+2)cm,即BC=(1+2) cm.由旋转的性质知,CF=CE=1 cm.∴BF=(2+2) cm. 18. 【答案】5 【解析】本题考查平行四边形的性质.∵顶点A,C分别在直线x=1和x=4上, 由平行四边形的中心对称的性质可知点B在直线x=5上运动,由题图可知当点B在x轴上时,OB的最小值为5. 19. (1) 【答案】原方程化为x2x-5-52x-5=1,两边乘以2x-5,得x-5=2x-5,解得x=0, 检验:当x=0时,2x-5=-5≠0,故x=0是原方程的解. (2) 【答案】解5x-10≤0,得x≤2,解x+3>-2x,得x>-1, 故不等式组的解集为-1<x≤2. 20. 【答案】原式=a2-2ab+b2+3ab-b2-a2=ab. 当a=2,b=6时,原式=2×6=23. 23. (1) 【答案】0.36. 说明:1-0.28-0.16-0.20=0.36. (2) 【答案】8b=0.160.20,b=10; 补充完整统计图如下: 最喜爱的传统文化项目类型频数分布直方图 (3) 【答案】1 500×0.28=420(名). 故该校喜爱围棋的学生大约有420名. 24. (1) 【答案】设p=ky+b,则100y+b=60,200y+b=110,解得y=12,b=10, ∴p=12y+10. (2) 【答案】利润=销售额-经销成本=y-12y+10=12y-10. 故3月份利润:12×150-10=65(万元);4月份利润:12×175-10=77.5(万元). (3) 【答案】从5月开始,每个月的利润为12y-10=90(万元), 线下每个月的利润为12y-10=12×100-10=40(万元), 设最早到第x个月止,[65+77.5+90(x-2)]-40x≥200,解得x≥4.75. ∵x为整数,∴最早到第5个月止. 25. (1) 【答案】证明:∵AB=AC,∴∠B=∠ACB. ∵AD平分∠CAE,∴∠CAD=∠EAD=12∠CAE. ∴∠B+∠ACB=∠CAE,∴∠B=∠EAD, ∴AD∥BC. (2) 【答案】∵CG⊥AD,∴∠AFC=∠AFG= 90°. ∵AF=AF,∠CAD=∠EAD,∴△AFC≌△AFG, ∴CF= FG=12CG.∴AD∥BC,∴△GAF∽△GBC, ∴AFBC=GFGC=12,∴BC= 2AF=8. 24. (1) 【答案】证明:在正方形ABCD和正方形BPEF中,AB=BC,BP=BF=PE=EF,∴AP=CF, 又∵∠BFE=∠BPE=90°,∴△APE≌△CFE, ∴EA=EC. (2) 【答案】①△ACE为直角三角形. 理由如下: 在正方形BPEF中,∠BPE=90°,∴∠APE=90°. ∵点P为AB的中点,∴AP=BP. ∵BP= PE,∴AP=PE,∴∠PAE=∠PEA=45°. 在正方形ABCD中,∠CAB=45°,∴∠CAE=90°, ∵∠AEC>∠AEP=45°,∴△ACE为直角三角形; ②∵EP平分∠AEC,∴∠AEP=∠CEP. 在正方形BPEF中,PE∥BF,∴∠CEP=∠ECF,∴∠AEP=∠ECF. ∵∠APE=∠EFC=90°,∴△APE∽△EFC,∴APEF=PEFC,∴a-bb=ba+b, ∴a2=2b2,∴a=2b或-2b(舍去),∴a∶b=2∶1, 连接BE, 则BE=2BP=2b,∠EBF=45°, ∴BE=BC,∴∠BCE=∠BEC,∴∠EBF=∠BCE+∠BEC=2∠ECB. ∵∠AEC=2∠CEP,∠CEP=∠ECB, ∴∠AEC=2∠ECB,∴∠AEC=∠EBF=45°. 26. (1) 【答案】FE=FD 如图,连接AF. ∵四边形ABCD是菱形,∠ABC=60°,∴∠ADC=∠ABC=60°,∴∠ADB=12∠ADC=12×60°=30°.∵四边形AEFG是菱形,∴AE=FE.∵∠AEF=60°,∴△AEF是等边三角形,∴FE=FA,∠AFE=60°,∴∠FAD=∠AFE-∠ADB=60°- 30°=30°,∴∠FAD=∠ADB,∴FA=FD.∴FE=FD. (2) 【答案】成立 证明:如图,连接CE,AF. ∵四边形ABCD是菱形,四边形AEFG是菱形, ∴AD=CD, AE=FE,BD垂直平分AC,∠ABC=∠ADC,∴∠ADC=∠AEF=60°, ∴△ACD和△AEF是等边三角形, ∴AC=AD, AE=AF=FE,∠CAD=∠EAF=60°, ∴∠CAE=∠DAF, ∴△ACE≌△ADF(SAS), ∴CE=FD. ∵BD垂直平分AC, ∴CE=AE, ∴FE=FD. (3) 【答案】3BE=BD(或者写成BE=33BD). 如图,连接AF,CG,设AF与CG的交点为M. ∵四边形ABCD是菱形, ∴AB=AC,BD垂直平分AC, ∴∠AOB=∠AOD=90°,AE=CE, ∴∠EAC=∠ECA. ∵∠ABC=60°, ∴△ABC是等边三角形, ∴AB=AC, ∴∠BAC=60°. ∵四边形AEFG是菱形,C,E,G三点在同一条直线上, ∴EG⊥AF,AE=FE. ∴∠AMC=90°, ∴∠AEF=60°, ∴△AEF是等边三角形, ∴∠EAF=60°, ∵∠BAC=∠EAF, ∴∠BAC+∠EAC=∠EAF+∠EAC, 即∠BAE=∠FAC. ∵∠AOD=90°, ∴∠BEA+∠EAC=90°. 又∵∠FAC+∠ECA=90°, ∴∠FAC=∠BEA, ∴∠BAE=∠BEA, ∴BE=BA, ∴BE=AC. 在 Rt△AOB中, ∵tan∠BAC=BOAO, ∴BOAO=tan60°=3. ∵BD=2BO,AC=2AO, ∴BDAC=3, ∴BDBE=3, ∴BD=3BE. 26. (1) 【答案】①② 证明:在△BEO和△DFO中,∠BOE=∠DOF,OB=OD,∠1=∠2, ∴△BEO≌△DFO. (2) 【答案】由第1问知,△BEO≌△DFO, ∴OE=OF. 又∵AE=CF, ∴OA=OC, ∴四边形ABCD是平行四边形. Welcome To Download !!! 欢迎您的下载,资料仅供参考! 精品资料- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 期末 模拟 测试 难度 参考答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文