巧用基本方法解中考压轴题(数学).doc
《巧用基本方法解中考压轴题(数学).doc》由会员分享,可在线阅读,更多相关《巧用基本方法解中考压轴题(数学).doc(9页珍藏版)》请在咨信网上搜索。
______________________________________________________________________________________________________________ 巧用基本方法解中考压轴题 面对中考压轴难题,不同的学生有不同的解法,这与学生的认知经验、数学思维能力有直接关系,但不可否认的是,解题方法还是有章可循的,它是平时知识的积累,也是解题技巧、几何模型归纳总结的体现. 本文以一道中考题为例,介绍如何探寻解题思路. 一、原题呈现 (2017年重庆市中考题)如图1,正方形中,,点是对角线上一点,连结,过点作,交于点,连结,交于点,将沿翻折,得到,连结,交于点.若点是的中点,则的周长是 . 二、解题思路探寻 本题虽然是求三角形的周长,实质是求线段的长度.而求解的线段长度常用基本的方法有:勾股定理,三角函数或解直角三角形,构造全等或相似三角形进行线段转化,代数法,面积法等.根据对图形的观察,发现图中有平行相似三角形(型);有两个三垂直全等三角形模型(型);有、、、四点共圆;大胆猜想图中、、是否三点共线,猜想点的位置等隐藏信息.如何利用以上隐藏的条件突破本题?现立足于以上常规思路,寻找解决本题的自然解法,并进行灵活变通,获得巧思妙解. 1.寻找相似三角形,利用比例式求解 解法1 寻找相似三角形,利用比例式求解. 如图1. ∵, ∴、、、四点共圆, ∴. 又∵, ∴为等腰直角三角形. 由,, 则, ∴. ∵, ∴, ∴, 可求得,. 由折叠,得, , ∴在中, . 过点作,则, 为等腰直角三角形, ∴, 又∵、、、四点共圆, ∴, ∴. 由折叠,得, 得,. 过点作,则, ∴, ∴. ∵, ∴, ∴, ∴. 又∵、、、四点共圆, ∴, ∴. 由折叠,得, ∴, ∴,, ∴的周长为. 评析 此解法妙在自然.求一个三角形的周长,意在求三条边长的长度.对于中考压轴题,构造相似三角形,利用对应边成比例列出关系式,是常规的方法,符合学生的认知.解法1中,发现、、、四点共圆,妙用圆周角进行角度转化,快速证明了为等腰直角三角形,为问题解决开辟了一条捷径.通过证明两个三角形相似,三角函数的逆运算 证明角相等,可见数学思维能力要求不一般. 解法2 如图1,由解法I,知 . ∴, 即. 又根据解法1,得, , ∴, ∴的周长为. 评析 解法2妙在利用整体思想方法,用相似三角形周长比等于相似比这一性质,不把每一条边都求出来,简化计算,可谓眼前一亮.这是整体思想在初中代数中应用的体现,可见灵活的进行知识迁移,举一反三,提高思维品质非常重要. 2.构造直角三角形,利用匀股定理或锐角三角比求解 解法3 如图2,由解法1,得 ,, ∴,即点为正方形的中心. 由,, ∴, 又∵, ∴,. 连结,易证, ∴. 在中,, 即, ∴的周长为. 评析 在初中阶段,利用勾股定理或利用锐角三角比解直角三角形也是求线段长的常见方法之一,解法3利用推导出点为正方形的中心,不仅为构造所求线段,所在的直角三角形提供了便利,也对几何图形有了更清晰的、更直观的理解,为问题的解决提供了一条重要线索. 解法4 如图3,由解法1,得 . 连结,交与点,由折叠,易知. 由解法1,知 ,, ∴. 由解法1,知 ,, ∴, ∴. 在中,. ∴的周长为. 评析 解法4利用翻折的性质,构造所求线段的直角三角形.同时利用三角函数关系,证明了点是线段的中点,把复杂图形简单化. 以上四种方法的共同点都是通过四点共圆巧妙证明为等腰直角三角形,通过圆内斜的相似三角形,列比例式求解长度. 那么,是否有其他证明为等腰直角三角形的方法?有没有其他求解的解法?是否必须要用到四点共圆?值得思考. 3.巧借几何模型,利用基本结论求解 解法5 如图4,过点作,交于,交于,连结.构建两组全等三角形,即,得. 易证明,得, ∴. 由,易证明,是等腰三角形,利用勾股定理计算得 ,. 再由平行相似证明, 列比例式,可得, 从而得. ∴. 另外两条线段的求解可以参考解法3、解法4,这里不再重复. 评析 解法5利用常见的两个几何模型.第一个模型为三垂直全等三角形模型(型),第二个模型是正方形对角线任意点到另外连个顶点距离相等的模型.利用这两个模型,进行线段之间等量替换,从而证明了是等腰直角三角形,自然求出长度.为解题找到了突破口,解决问题水到渠成. 4.数形结合,利用解析法求解 解法6 如图5,以点为原点建立平面直角坐标系,过点作,过点作,则根据题意,得 ,,直线y. 设点,所以可求得 ,. ∵, ∴, 即 解得, ∴. 易得, ∴为等腰直角三角形, ∴. ∵, ∴, ∴, ∴, ∴,. 由折叠,得,, 易证, ∴,, ∴. ∴,, 联立求得. 利用两点间距离公式,分别求得 ,,, ∴的周长为. 评析 解法6妙在数形结合,用代数的方法解决几何问题.通过建立合适的平面直角坐标系,求出对应、、的坐标,利用两点间距离公式求解,是一种非常直观高效的方法. Welcome To Download !!! 欢迎您的下载,资料仅供参考! 精品资料- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基本 方法 中考 压轴 数学
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文