人教版高一数学必修5主要知识点整理.pdf
《人教版高一数学必修5主要知识点整理.pdf》由会员分享,可在线阅读,更多相关《人教版高一数学必修5主要知识点整理.pdf(13页珍藏版)》请在咨信网上搜索。
1人教版高一数学必修人教版高一数学必修 5 5 主要知识点主要知识点 第一章第一章 解三角形解三角形1 1、三角形三角关系:、三角形三角关系:A+B+C=180A+B+C=180;C=180-(A+B)C=180-(A+B);2 2、三角形三边关系:、三角形三边关系:a+bc;a+bc;a-bca-baan n)6 6、递减数列:从第、递减数列:从第 2 2 项起,每一项都不大于它的前一项的数列(即:项起,每一项都不大于它的前一项的数列(即:a an+1n+1a0,d0,d0 时,满足时,满足001mmaa的项数的项数m m 使得使得ms取最大值取最大值.(2)(2)当当1a00 时,满足时,满足001mmaa的项数的项数 m m 使得使得ms取最小值。在解取最小值。在解含绝对值的数列最值问题时含绝对值的数列最值问题时,注意转化思想的应用。注意转化思想的应用。附:数列求和的常用方法附:数列求和的常用方法1.1.公式法公式法:适用于等差、等比数列或可转化为等差、等比数列的数列。适用于等差、等比数列或可转化为等差、等比数列的数列。2.2.裂项相消法裂项相消法:适用于适用于1nnaac其中其中 na 是各项不为是各项不为 0 0 的等差数列,的等差数列,c c 为常数;部分无为常数;部分无理数列、含阶乘的数列等。理数列、含阶乘的数列等。3.3.错位相减法错位相减法:适用于适用于nnba其中其中 na 是等差数列,是等差数列,nb是各项不为是各项不为 0 0 的等比数列。的等比数列。4.4.倒序相加法倒序相加法:类似于等差数列前类似于等差数列前 n n 项和公式的推导方法项和公式的推导方法.5.5.常用结论常用结论1 1):1+2+3+.+n1+2+3+.+n =2)1(nn 2 2)1+3+5+.+(2n-1)1+3+5+.+(2n-1)=2n 3 3)2333)1(2121nnn 4)4)12)(1(613212222nnnn;5)5)111)1(1nnnn,)211(21)2(1nnnn;6 6))()11(11qpqppqpq8附加:重点归纳附加:重点归纳等差数列和等比数列(表中),m n p qN 类别项目等差数列 na等比数列 na定义1nnaad1nnaqa11naand11nnaa q通项公式nmaanm dn mnmaa q前 n 项和12nnn aaS112n nnad11111111nnnna qSaqaa qqqq等差(比)中项122nnnaaa212nnnaaa公差(比),nmaadnmmnn mnmaqamnpqmnpqaaaamnpqmnpqaaaa22mnpmnpaaa22mnpmnpaaa成等差232,mmmmmSSSSS数列,公差为(是前项和)2m dnSn成等比数列,公232,mmmmmTTTTT比为(是前项积)2mqnTn仍然是等差数列,2,mm kmkaaa其公差为kd仍然是等比数列,2,mm kmkaaa其公比为kq性质是等差数列nkab是等比数列()knba0b 9单调性;0,d A;0,d A常数列0,d 时,10a,;1,q A01,qA时,10a,;1,q A01,qA为常数列;为摆动数1q 0q 列2.等差数列的判定方法:(为常数),a b d.定义法:若 1nnaad.等差中项法:若 为等122nnnaaa na差数列.通项公式法:若naanb.前 n 项和法:2nSanbn3.等比数列的判定方法:(,为非零常数)kq.定义法:若1nnaqa.等比中项法:若 212nnnaaa为等比数列.na.通项公式法:若nnakq.前 n 项和法:nnSkkq 第三章第三章 不等式不等式一、一、不等式的主要性质:不等式的主要性质:(1 1)对称性:)对称性:abba (2 2)传递性:)传递性:cacbba ,(3 3)加法法则:)加法法则:;cbcaba (4 4)同向不等式加法法则:)同向不等式加法法则:dbcadcba ,10(5 5)乘法法则:)乘法法则:;bcaccba 0,bcaccba 0,(6 6)同向不等式乘法法则:)同向不等式乘法法则:bdacdcba 0,0(7 7)乘方法则:)乘方法则:)1*(0 nNnbabann且 且(8 8)开方法则:)开方法则:)1*(0 nNnbabann且 且(9 9)倒数法则:)倒数法则:baabba110,二、一元二次不等式二、一元二次不等式和和及其解法及其解法02 cbxax)0(02 acbxax 0 0 0 二次函数二次函数cbxaxy 2()的图象)的图象0a)(212xxxxacbxaxy )(212xxxxacbxaxy cbxaxy 2一元二次方程一元二次方程的根002acbxax有两相异实根有两相异实根)(,2121xxxx 有两相等实根有两相等实根abxx221 无实根无实根的解集)0(02acbxax21xxxxx或abxx2R R的解集)0(02acbxax21xxxx .一元二次不等式先化标准形式(一元二次不等式先化标准形式(化正)化正).常用因式分解法、求根公式法求解一常用因式分解法、求根公式法求解一a元二次不等式。元二次不等式。口诀:在二次项系数为正的前提下:口诀:在二次项系数为正的前提下:“大于取两边,小于取中间大于取两边,小于取中间”三、均值不等式三、均值不等式1 1、设、设、是两个正数,则是两个正数,则称为正数称为正数、的算术平均数,的算术平均数,称为正数称为正数、的的ab2abababab几何平均数几何平均数112 2、基本不等式(基本不等式(也称也称均值不等式均值不等式):):若若均值不等式:如果均值不等式:如果 a,ba,b 是正数,那么是正数,那么0a).(22号时取当且仅当即baabbaabba注意:使用均值不等式的条件:一正、二定、三相等注意:使用均值不等式的条件:一正、二定、三相等3 3、平均不等式:(、平均不等式:(a a、b b为正数),即为正数),即(当(当a a =b b时取等)时取等)baabbaba1122222 4 4、常用的基本不等式:、常用的基本不等式:;222,abab a bR22,2ababa bR;20,02ababab222,22ababa bR5 5、极值定理:设、极值定理:设、都为正数,则有:都为正数,则有:xy若若(和为定值),则当(和为定值),则当时,积时,积取得最大值取得最大值若若(积为定(积为定xysxyxy24sxyp值),则当值),则当时,和时,和取得最小值取得最小值xyxy2p四、含有绝对值的不等式四、含有绝对值的不等式1 1绝对值的几何意义:绝对值的几何意义:是指数轴上点是指数轴上点到原点的距离;到原点的距离;是指数轴上是指数轴上两点两点|xx12|xx12,x x间的距离间的距离 ;代数意义:代数意义:0a 0 00|aaaaa2 2、则不等式:如果,0a ;axaxax或|axaxax或|;axaax|axaax|4 4、解含有绝对值不等式的主要方法:解含绝对值的不等式的基本思想是去掉绝对值符号、解含有绝对值不等式的主要方法:解含绝对值的不等式的基本思想是去掉绝对值符号 五、其他常见不等式形式总结:五、其他常见不等式形式总结:分式不等式的解法:先移项通分标准化,则分式不等式的解法:先移项通分标准化,则;0)()(0)()(xgxfxgxf 0)(0)()(0)()(xgxgxfxgxf指数不等式:转化为代数不等式指数不等式:转化为代数不等式;)()()1()()(xgxfaaaxgxf 12)()()10()()(xgxfaaaxgxf 对数不等式:转化为代数不等式对数不等式:转化为代数不等式 )()(0)(0)()1)(log)(logxgxfxgxfaxgxfaa )()(0)(0)()10)(log)(logxgxfxgxfaxgxfaa高次不等式:数轴穿线法口诀高次不等式:数轴穿线法口诀:“从右向左,自上而下;奇穿偶不穿,遇偶转个弯;从右向左,自上而下;奇穿偶不穿,遇偶转个弯;小于取下边,大于取上边小于取下边,大于取上边”例题:例题:不等式不等式的解为(的解为()03)4)(23(22xxxxA A11x x11 或或x x22B Bx x 3 3 或或 11x x22 C Cx x=4=4 或或33x x11 或或x x22D Dx x=4=4 或或x x”“”号,则号,则所表示的区域为直线所表示的区域为直线 l:l:的右边部分。的右边部分。0 xyCA 0 xyCA 若是若是“”“”号,则号,则所表示的区域为直线所表示的区域为直线 l:l:的左边部分。的左边部分。0 xyCA 0 xyCA (三)确定不等式组所表示区域的步骤:(三)确定不等式组所表示区域的步骤:画线:画出不等式所对应的方程所表示的直线画线:画出不等式所对应的方程所表示的直线定测:由上面(一)(二)来确定定测:由上面(一)(二)来确定求交:取出满足各个不等式所表示的区域的公共部分。求交:取出满足各个不等式所表示的区域的公共部分。例题:画出不等式组例题:画出不等式组所表示的平面区域。所表示的平面区域。解:略解:略25035250 xyyxyx6 6、线性约束条件:由、线性约束条件:由,的不等式(或方程)组成的不等式组,是的不等式(或方程)组成的不等式组,是,的线性约束条的线性约束条xyxy件件目标函数:欲达到最大值或最小值所涉及的变量目标函数:欲达到最大值或最小值所涉及的变量,的解析式的解析式xy线性目标函数:目标函数为线性目标函数:目标函数为,的一次解析式的一次解析式xy线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题可行解:满足线性约束条件的解可行解:满足线性约束条件的解,x y可行域:所有可行解组成的集合可行域:所有可行解组成的集合最优解:使目标函数取得最大值或最小值的可行解最优解:使目标函数取得最大值或最小值的可行解附加:附加:1 1 二元一次不等式(组)表示的平面区域二元一次不等式(组)表示的平面区域直线直线(或(或):直线定界,特殊点定域。:直线定界,特殊点定域。0:CByAxl0 注意:注意:不包括边界;不包括边界;包括边界包括边界 )0(0或CByAx)0(0 CByAx2.2.线性规划线性规划我们把求线性目标函数在线性目标条件下的最值问题称为线性规划问题。解决这类问我们把求线性目标函数在线性目标条件下的最值问题称为线性规划问题。解决这类问题的基本步骤是:题的基本步骤是:注意:注意:1.1.线性目标函数的最大值、最小值一般在可行域的顶点处取得;线性目标函数的最大值、最小值一般在可行域的顶点处取得;2.2.线性目标函数的最大值、最小值也可在可行域的边界上取得,即满足条件的最优解有无线性目标函数的最大值、最小值也可在可行域的边界上取得,即满足条件的最优解有无数个。数个。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版高一 数学 必修 主要 知识点 整理
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文