北师大版九年级数学知识点汇总.pdf
《北师大版九年级数学知识点汇总.pdf》由会员分享,可在线阅读,更多相关《北师大版九年级数学知识点汇总.pdf(16页珍藏版)》请在咨信网上搜索。
.学习参考北北师师大大版版九九年年级级数数学学知知识识点点汇汇总总第一章第一章特殊平行四边形特殊平行四边形一、平行四边形一、平行四边形1、定义:两组对边分别平行的四边形是平行四边形。2、性质:(1)平行四边形的对边平行且相等。(2)平行四边形的对角相等,邻角互补。.学习参考 (3)平行四边形的对角线互相平分,两条对角线把平行四边形分成四个面积相等的三角形。(4)平行四边形是中心对称图形。3、判定:(1)两组对边分别平行的四边形是平行四边形。(2)两组对边分别相等的四边形是平行四边形。(3)一组对边平行且相等的四边形是平行四边形。(4)两组对角分别相等的四边形是平行四边形。(5)对角线互相平分的四边形是平行四边形。4、面积:S平行四边形=底高二、菱形二、菱形1、定义:有一组邻边相等的平行四边形是菱形。2、性质:(1)菱形具有平行四边形的所有性质。(2)菱形的四条边都相等。(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角;两条对角线把菱形分成四个全等的直角三角形。(4)菱形既是中心对称图形,又是轴对称图形(两条)。3、判定:(1)有一组邻边相等的平行四边形是菱形。(2)对角线互相垂直的平行四边形是菱形。(3)四条边都相等的四边形是菱形。4、面积:S菱形=底高;S菱形=对角线乘积的一半三、矩形三、矩形1、定义:有一个角是直角的平行四边形是矩形。2、性质:(1)矩形具有平行四边形的所有性质。(2)矩形的四个角都是直角。(3)矩形的对角线相等且互相平分,两条对角线把矩形分成四个面积相等的等腰三角形。(4)推论:直角三角形斜边上的中线等于斜边的一半。(5)矩形既是中心对称图形,又是轴对称图形(两条)。3、判定:(1)有一个角是直角的平行四边形是矩形。(2)对角线相等的平行四边形是矩形。(3)有三个角是直角的四边形是矩形。.学习参考4、面积:S矩形=底高四、正方形四、正方形1、定义:有一组邻边相等,且有一个角是直角的平行四边形是正方形。2、性质:(1)正方形具有菱形和矩形的所有性质。(2)正方形的四条边都相等,四个角都是直角。(3)正方形的对角线互相垂直平分且相等,两条对角线把正方形分成四个全等的等腰直角三角形。(4)正方形既是中心对称图形,又是轴对称图形(四条)。3、判定:(1)有一组邻边相等的矩形是正方形。(2)对角线互相垂直的矩形是正方形。正方形=菱形+矩形 (3)有一个角是直角的菱形是正方形。(4)对角线相等的菱形是正方形。4、面积:S正方形=边长的平方;S正方形=对角线乘积的一半五、中点四边形五、中点四边形1、定义:以四边形四条边的中点为顶点组成的四边形2、中点四边形:一般四边形平行四边形;平行四边形平行四边形;菱形矩形;矩形菱形;正方形正方形。第二章第二章 一元二次方程一元二次方程一、定义一、定义:我们把形如的方程,称为一元二次方程。其中,2(,)axbxco a b cao为常数,2ax,分别称为二次项,一次项和常数项,分别称为二次项系数和一次项系数。bxcab二、解一元二次方程的方法二、解一元二次方程的方法1、配方法:移项二次项系数化为 1配方(方程两边同时加上一次项系数一半的平方)开平方(有正负两个结果)求解写根。2、公式法:化为一般形式()找出,(记得带上符号)代入根的判别式(2axbxcoabc)代入求根公式()求解写根。24bac242bbacxa 240bac3、因式分解法:当一元二次方程的一边为 0,另一边易于分解成两个一次因式的乘积时可用因式分解法。(1)提公因式法:0acbc()0c ab (2)公式法:平方差公式:22()()abab ab.学习参考 完全平方公式:2222()aabbab (3)十字相乘法:2()()()xpq xpqxp xq三、一元二次方程根的判别式三、一元二次方程根的判别式:对于一元二次方程2()axbxco ao (1)当时,方程有两个不相等的实数根。240bac (2)当时,方程有两个相等的实数根。240bac (3)当时,方程没有实数根。240bac四、一元二次方程根与系数之间的关系(韦达定理)四、一元二次方程根与系数之间的关系(韦达定理)如果方程有两个实数根,那么,2()axbxco ao1x2x12bxxa 12cx xa五、应用一元二次方程(五、应用一元二次方程(1 1、几何面积问题;、几何面积问题;2 2、销售问题)、销售问题)审题寻找数量关系和等量关系设未知数(直接假设和间接假设)列一元二次方程解方程检验作答。第三章第三章 概率的进一步认识概率的进一步认识一、列表法和化树状图法一、列表法和化树状图法1、列表法:当一次实验涉及两个因素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用列表法。2、画树状图法:当一次实验涉及 3 个或更多因素时,列表就不方便,为了不重不漏地列出所有可能的结果,通常采用画树状图法。二、频率估计概率:二、频率估计概率:一般的,在大量重复实验时,如果事件 A 发成的频率稳定于某个常数,那么事mnP件 A 发生的概率 P AP.学习参考第四章第四章 图形的相似图形的相似一、成比例线段一、成比例线段1、定义:四条线段中,如果与的比等于与的比,即,那么这四条线段叫,a b c dabcdacbd,a b c d做成比例线段,简称比例线段。2、性质:(1)基本性质:如果,那么;acbdadbc 如果,那么adbc,0a b c d都不等于acbd (2)等比性质:如果,那么=0acmbdnbdnacmabdnb (3)合比性质:如果,那么,acbdabcdbdabcdbd二、平行线分线段成比例二、平行线分线段成比例.学习参考1、定理:两条直线被一组平行线所截,所得的对应线段成比例2、推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例三、相似多边形三、相似多边形1、定义:各角分别相等,各边成比例的两个多边形叫做相似多边形。相似多边形对应边的比叫做相似比2、性质:相似多边形的周长比等于相似比,面积比等于相似比的平方四、相似三角形四、相似三角形1、定义:三角分别相等,三边成比例的两个三角形叫做相似三角形2、判定:(1)两角分别相等的两个三角形相似 (2)两边成比例且夹角相等的两个三角形相似 (3)三边成比例的两个三角形相似3、性质:(1)相似三角形的对应角相等,对应边成比例 (2)相似三角形对应高的比,对应中线的比,对应角平分线的比都等于相似比 (3)相似三角形的周长比等于相似比,面积比等于相似比的平方五、黄金分割:五、黄金分割:点把线段分成两条线段和,如果,那么称线段CABACBCACBCACBCABAC 被点黄金分割,点叫做线段的黄金分割点,与的比叫做黄金比,ABCCABACAB即 :0.618:1AC AB 六、位似图形六、位似图形1、定义:一般的,如果两个相似多边形任意一组对应顶点,所在的直线都经过同一点,且有=PPOOP,那么这样的两个多边形叫做位似多边形,点叫做位似中心0k OP kO2、性质:位似图形上任意一对对应点到位似中心的距离之比等于相似比3、画图步骤:(1)尺规作图法:确定位似中心;确定原图形中的关键点关于中心的对应点;描出新图形 (2)坐标法:在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘于同一个数,所对应的图形与原图形位似,位似中心是坐标原点,它0k k 们的相似比为k.学习参考第五章第五章 投影与视图投影与视图一、投影一、投影:物体在光线的照射下,会在地面或其他平面上留下它的影子,这就是投影现象,影子所在的平面叫做投影面1、中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影。如物体在灯泡发出的光照射下形成的影子就是中心投影2、平行投影:由平行光线形成的投影叫做平行投影。如物体在太阳光的照射下形成的影子(简称日影)就是平行投影。若平行光线与投影面垂直,则这种投影称为正投影二、三视图二、三视图1、视图:用正投影的方法绘制的物体在投影面上的图形,称为物体的视图2、三视图概念:(1)主视图:从正面得到的视图叫做主视图,反映物体的长和高 (2)左视图:从左面得到的视图叫做左视图,反映物体的长和宽 (3)俯视图:从上面得到的视图叫做俯视图,反映物体的高和宽3、三视图特点:(1)主视图和俯视图的长对正 (2)主视图和左视图的高平齐 (3)左视图和俯视图的宽相等.学习参考第六章第六章 反比例函数反比例函数一、定义一、定义:一般的,形如的函数,叫做反比例函数。其中是自变量,是函数。0kykkx为常数,xy自变量的取值范围是不等于 0 的一切实数x二、表达式二、表达式:1、;2、;3、kyx1ykxxyk三、图象与性质三、图象与性质1、图象:由两条曲线组成(双曲线)2、性质:函数k图象所在象限增减性0k 第一、三象限,x y同号在同一象限内,随的增大而减yx小kyx0kk 为常数,0k 第二、四象限,x y异号在同一象限内,随的增大而增yx大.学习参考3、反比例 函数比例系数的几何意义k 如图,在反比例函数上任取一点,过这一点分别作轴,轴kyx,P x yxy的垂线,与坐标轴围成的矩形的面积PEPFPEOFSxyk4、对称性:(1)中心对称,对称中心是坐标原点 (2)轴对称:对称轴为直线和直线yxyx 第七章第七章 直角三角形的边角关系直角三角形的边角关系一、锐角三角函数一、锐角三角函数 在中,则的三角函数为Rt ABC90CA二、特殊角的三角函数值二、特殊角的三角函数值三角函数304560sin212223cos232221tan3313三、解直角三角形三、解直角三角形1、直角三角形的边角关系:(1)两锐角关系:90AB 越大,函数图象越远离坐标原点k定 义表达式取值范围关 系正弦斜边的对边AAsincaA sin 1sin0A(A 为锐角)余弦斜边的邻边AAcoscbA cos 1cos0A(A 为锐角)BAcossinBAsincos1cossin22AA正切的邻边的对边AtanAAbaA tan0tanA(A 为锐角)1tantanAB对边邻边b斜边ACBbac.学习参考(2)三边关系:(勾股定理)222abc (3)边角关系:,sincosaABccossinbABc ,tanaAbtanbBa2、解直角三角形的类型和解法第八章第八章 二次函数二次函数一、概念一、概念:一般的,若两个变量,之间的对应关系可以表示成xy的形式,则称是的二次函数,其中,是自变量,2,yaxbxc a b cao是常数yxx分别是函数解析式的二次项系数、一次项系数和常数项,a b c二、二次函数图象及其性质二、二次函数图象及其性质1、图像与性质已知条件图形解法已知一直角边和一个锐角,aA2290,sintanaaBA cbbcaAA或已知斜边和一个锐角,cA2290,sin,cosBA acA bcAbca或已知两直角边,a b22,tan,90acabAABAb由求已知斜边和一条直角边,c a22,sin,90abcaAABAc由求函数2,0ya xhk a h ka为常数2,yaxbxc a b cao是常数0a 0a 0a 0a 图象开口方向开口向上开口向下开口向上开口向下对称轴直线xh直线2bxa 增减性当时,随的xhy增大而减小;x当时,随xhy的增大而增大x当时,随xhy的增大而增大;x当时,随的xhy增大而减小;x当时,随2bxa y的增大而减小;x当时,随2bxa y当时,随2bxa y的增大而增大;x当时,随2bxa y对边邻边b斜边ACBbac.学习参考2、抛物线与的关系,a b c三、二次函数表达式的确定。三、二次函数表达式的确定。确定二次函数表示的方法仍是待定系数法,有以下三种方法:1、一般式:若已知抛物线过三点,一般设函数表达式为2yaxbxc ao2、顶点式:若已知抛物线的顶点是,可设函数表达式为,h k20ya xhk a3、交点式:若已知抛物线与轴两个交点,可设函数表达式x1,0 x2,0 x120ya xxxxa四、二次函数的平移规律四、二次函数的平移规律的增大而增大x的增大而减小;x时,在对称轴左侧,随的增大而减小,在对称轴右侧,随的增大而增大;0a yxyx时,在对称轴左侧,随的增大而增大,在对称轴右侧,随的增大而减小0a yxyx顶点,h k24,24bacbaa最值抛物线有最低点,当时,有最xhy小值,yk最小值抛物线有最高点,当时,有最xhy大值yk最大值抛物线有最低点,当时,有最2bxa y小值244acbya最小值抛物线有最高点,当时,有最2bxa y大值244acbya最大值决定抛物线开口方向,抛物线开口向上;0a,抛物线开口向下0a a决定抛物线开口大小越大,开口越小a,a b决定抛物线对称轴位置,对称轴为直线2bxa,对称轴为轴;0b y,对称轴在轴左侧;同号在左,0ab y,对称轴在轴右侧 异号在0ab y右c决定抛物线与轴的交点位置y,抛物线过原点;0c,抛物线与轴交于正半轴;0c y,抛物线与轴交于负半轴0c y24bac决定抛物线与轴的交点x时,与轴有两个交点;240bacx时,与轴有一个交点;240bacx时,与轴没有交点240bacx,a b c24,24bacbaa决定顶点位置顶点坐标为24,24bacbaa移动方向平移前的表达式平移后的表达式简记向左平移个单位m2ya xhk2ya xhmk左加.学习参考五、二次函数与一元二次方程的关系五、二次函数与一元二次方程的关系二次函数的图象与轴的交点有三种情况:有两个交点;有一个交点;没有交2yaxbxc aox点,当图象与轴有交点时,令,解方程就可以求出与轴交点的横坐标x0y 20axbxcx第九章第九章 圆圆一、圆的有关概念和性质一、圆的有关概念和性质1、圆的基本概念:(1)圆:到定点的距离等于定长的所有点组成的图形叫做圆。定点是圆心,定长是半径(2)弦、直径:连接圆上任意两点的线段叫做弦;经过圆心的弦叫做直径(3)弧:圆上任意两点间的部分叫做弧;大于半圆的弧称为优弧,小于半圆的弧称为劣弧(4)等圆、等弧:能够重合的圆叫做等圆;能够重合的弧叫做等弧(5)圆心角:顶点在圆心,端点在圆上的角叫做圆心角(6)圆周角:定点和端点都在圆上的角叫做圆周角2、圆的性质 (1)圆是轴对称图形,任意一条直径所在的直线都是圆的对称轴;圆也是中心对称图形,对称中心是圆心(2)把圆绕圆心旋转任意一个角度,所得到的图形都与原图形重合(3)过不在同一直线上的三个点确定一个圆二、与圆有关的定理和推论二、与圆有关的定理和推论向右平移个单位m2ya xhk2ya xhmk右减向上平移个单位m2ya xhk2ya xhkm上加向下平移个单位m2ya xhk2ya xhkm下减注意平移之前函数表达式必须先化为顶点式24bac 的根20axbxc抛物线与轴的交点2yaxbxcx0 两个不相等的实数根两个交点0 两个相等的实数根一个交点0 没有实数根没有交点.学习参考文字语言图形几何语言定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等圆心角、弧、弦之间的关系推论:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组相等,那么它们所对应的其余各组量都分别相等在同圆或等圆中,1、圆心角相等:AOBDOE 2、弧相等:ABDE3、弦相等:ABDE以上条件知其中一个可得其二定理:圆周角的度数等于它所对的弧的圆心角度数的一半 是所对的圆心角,AOBAB是所对的圆周角,CAB12CAOB推论 1:同弧或等弧所对的圆周角相等和都是所对的圆周角CDABCD 推论 2:直径所对的圆周角是直角,的圆周角所对的弦是90直径是的直径ABOA是所对的圆周角CAB90C是所对的圆周角CAB 90C是的直径ABOA圆周角定理推论 3:圆的内接四边形对角互补四边形是的内接四边形ABCDOA180BD 180BADC CDAE 定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧是的直径,ABOAABCD,CEDEBCBDACAD垂径定理推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是的直径,ABOACEDE于点ABCDE ,BCBDACADFEDCBAOCBAODCBAOCBAOEDCBAOEDCBA.学习参考三、与圆有关的位置关系三、与圆有关的位置关系1、点与圆、直线与圆的位置关系2、切线的性质与判定(1)切线性质定理:圆的切线垂直于过切点的半径(2)切线性质的推论:经过圆心且垂直于切线的直线必经过切点 经过切点且垂直于切线的直线必经过圆心(3)切线判定:经过半径的外端并且垂直于这条半径的直线是圆的切线 和圆只有一个公共点的直线是圆的切线 如果圆心到一条直线的距离等于圆的半径,那么这条直线是圆的切线(4)切线长定理:过圆外一点所画的圆的两条切线长相等,这一点和圆心的连线平分两条切线的夹角3、三角形和圆文字语言图形几何语言设的半径为,点到圆心的距离为,OArd则有:点在圆外点在圆外Adr点在圆上点在圆上Bdr点与圆的位置关系点在园内点在圆外Cdr设的半径为,圆心到直线 的距离为OArOld则有:相交:直线和圆有两个公共点rd直线 和相交lOAdr相切:直线和圆只有一个公共点d=r直线 和相切lOAdr直线与圆的位置关系相离:直线和圆没有公共点dr直线 和相离lOAdr定义外心、内心性质图形rddCBAO.学习参考四、与圆有关的计算四、与圆有关的计算1、弧长和扇形面积2、正多边形和圆 (1)正多边形的有关计算 (2)正多边形每个内角度数为,每个外角度数为2 180nn360n3、圆锥的有关计算三角形外接圆经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆外接圆的圆心是三角形三条边的垂直平分线的交点,叫做三角形的外心三角形的外心到三角形三个顶点的距离相等ABCO三角形内切圆与三角形各边都相切的圆叫做三角形的内切圆内切圆的圆心是三角形三个内角的角平分线的交点,叫做三角形的内心三角形的内心到三角形三边的距离相等ABCI圆的周长圆的弧长圆的面积扇形面积2Cr180n rl2Sr213602n rSrl为圆的半径;为弧所对的圆心角的度数;为扇形的弧长rnl中心角边心距周长面积360n222arRlna12Srl为边数;为边心距;为半径;为边长nrRa底面圆面积地面圆周长圆锥的高侧面积体积2Sr2Cr22hlr213602n lSl C侧213Vr h为母线长;为底面圆半径;为圆锥的高;为侧面展开后圆心角度数lrhnrnlSlBAOBAOB1RrCBAO.学习参考1.若不给自己设限,则人生中就没有限制你发挥的藩篱。2.若不是心宽似海,哪有人生风平浪静。在纷杂的尘世里,为自己留下一片纯静的心灵空间,不管是潮起潮落,也不管是阴晴圆缺,你都可以免去浮躁,义无反顾,勇往直前,轻松自如地走好人生路上的每一步 3.花一些时间,总会看清一些事。用一些事情,总会看清一些人。有时候觉得自己像个神经病。既纠结了自己,又打扰了别人。努力过后,才知道许多事情,坚持坚持,就过来了。4.岁月是无情的,假如你丢给它的是一片空白,它还给你的也是一片空白。岁月是有情的,假如你奉献给她的是一些色彩,它奉献给你的也是一些色彩。你必须努力,当有一天蓦然回首时,你的回忆里才会多一些色彩斑斓,少一些苍白无力。只有你自己才能把岁月描画成一幅难以忘怀的人生画卷。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 九年级 数学 知识点 汇总
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文