第三章-一维稳态和非稳态导热.ppt
《第三章-一维稳态和非稳态导热.ppt》由会员分享,可在线阅读,更多相关《第三章-一维稳态和非稳态导热.ppt(70页珍藏版)》请在咨信网上搜索。
一维稳态和非稳态导热一维稳态和非稳态导热内容结构内容结构1 稳态导热稳态导热 2 非稳态导热非稳态导热(1)定义及分类)定义及分类(2)温度变化的不同阶段)温度变化的不同阶段(3)温度分布和热量变化)温度分布和热量变化(4)学习非稳态导热的目的)学习非稳态导热的目的(5)两个相似准数)两个相似准数(1)概述)概述(2)单层平壁的导热)单层平壁的导热(3)多层平壁的导热)多层平壁的导热(4)关于平壁的例题)关于平壁的例题 (5)单层圆筒壁的导热)单层圆筒壁的导热(6)N层圆筒壁的导热层圆筒壁的导热(7)临界绝热层直径)临界绝热层直径(8)关于圆筒壁的例题)关于圆筒壁的例题3 薄材的非稳态导热薄材的非稳态导热(1)定义)定义 (2)温度分布)温度分布(3)热流量)热流量(4)集总参数法的应用条件)集总参数法的应用条件(5)例题)例题4 半无限大的物体半无限大的物体(1)概念)概念 (2)求解过程)求解过程(3)例题)例题(1)求解)求解(2)查图)查图(3)例题)例题5 有限厚物体的一维非稳态导热有限厚物体的一维非稳态导热.一维稳态和非稳态导热一维稳态和非稳态导热1 稳态导热稳态导热(1)概述)概述研究内容:研究内容:研究固体中的导热问题,重点是确定研究固体中的导热问题,重点是确定物体中的温度物体中的温度场场和和通过物体的导热速率通过物体的导热速率。求解思路求解思路:一般来说,对于固体一般来说,对于固体因此,分析导热,先用导热微分方程求得温度场,然后利于傅因此,分析导热,先用导热微分方程求得温度场,然后利于傅立叶定律求得导热速率立叶定律求得导热速率温度场温度场固体中温度场固体中温度场导热速率导热速率热量传输微分方程热量传输微分方程固体导热微分方程固体导热微分方程傅立叶定律傅立叶定律.一维稳态和非稳态导热一维稳态和非稳态导热1 稳态导热稳态导热(1)概述)概述求解方法:求解方法:通过通过导热微分方程求解导热微分方程求解 直角坐标系:直角坐标系:柱坐标系:柱坐标系:球坐标系:球坐标系:求解导热微分方程的方法:求解导热微分方程的方法:(1 1)分析解法;)分析解法;(2 2)数值解法。)数值解法。.一维稳态和非稳态导热一维稳态和非稳态导热1 稳态导热稳态导热(2)单层平壁的导热)单层平壁的导热几何条件几何条件:单层平板;:单层平板;物理条件物理条件:、c、;时间条件时间条件:稳态导热,稳态导热,t/=0;边界条件边界条件:第一类。:第一类。且且已知;已知;无内热源无内热源。由此可得:由此可得:直接积分:直接积分:第一类边界条件:第一类边界条件:ot1tt2控制控制方程方程边界边界条件条件.一维稳态和非稳态导热一维稳态和非稳态导热1 稳态导热稳态导热(2)单层平壁的导热)单层平壁的导热将边界条件带入控制方程可得:将边界条件带入控制方程可得:将结果带入微分方程,可以得到下面的单层平壁的导热方将结果带入微分方程,可以得到下面的单层平壁的导热方程式。程式。热阻分析法适用于一维、稳态、无内热源的情况热阻分析法适用于一维、稳态、无内热源的情况.一维稳态和非稳态导热一维稳态和非稳态导热1 稳态导热稳态导热(3)多层平壁的导热)多层平壁的导热多层平壁多层平壁:由几层由几层不同材料不同材料组成,组成,房屋的墙壁白灰内层、水泥沙浆房屋的墙壁白灰内层、水泥沙浆 层、红砖层、红砖(青砖青砖)主体层等组成;主体层等组成;假设各层之间接触良好,可以近似假设各层之间接触良好,可以近似 地认为接合面上各处的温度相等;地认为接合面上各处的温度相等;t1t2t3t4t1t2t3t4三层平壁的稳态导热三层平壁的稳态导热边界边界条件:条件:热阻:热阻:.一维稳态和非稳态导热一维稳态和非稳态导热1 稳态导热稳态导热(3)多层平壁的导热)多层平壁的导热问:如已经知道了问:如已经知道了q,如何计算其,如何计算其 中第中第i 层的右侧壁温?层的右侧壁温?t1t2t3t4t1t2t3t4三层平壁的稳态导热三层平壁的稳态导热由热阻由热阻分析法分析法得:得:多层、第多层、第三类边条三类边条件:件:.一维稳态和非稳态导热一维稳态和非稳态导热1 稳态导热稳态导热(4)关于平壁的例题)关于平壁的例题例例题题3:图图为为具具有有内内热热源源并并均均匀匀分分布布的的平平壁壁,壁壁厚厚为为2s。假假定定平平壁壁的的长长宽宽远远大大于于壁壁厚厚,平平壁壁两两表表面面温温度度为为恒恒温温tw,内内热热源源强强度度为为qv,平平壁壁材材料料的的导导热热系系数数为为常常数数。试试求求稳稳态态导导热热时时,平平壁内的温度分布和中心温度。壁内的温度分布和中心温度。解解:因因平平壁壁的的长长、宽宽远远大大于于厚厚度度,故故此此平平壁壁的的导导热热可可认认为为是是一一维维稳稳态态导导热热,这时导热微分方程式可简化为:这时导热微分方程式可简化为:相应的边界条件为:相应的边界条件为:x=s时,时,t=twx=-s时,时,t=tw.一维稳态和非稳态导热一维稳态和非稳态导热可见,该条件下平壁内温度是按抛物线规律分布。令温度分可见,该条件下平壁内温度是按抛物线规律分布。令温度分布关系式中的布关系式中的x=0,则得平壁,则得平壁中心温度中心温度为:为:求解上述微分方程,得求解上述微分方程,得:式中积分常数式中积分常数C1和和C2可由边界条件确定,它们分别为:可由边界条件确定,它们分别为:所以,平壁所以,平壁内温度分布内温度分布为为:1 稳态导热稳态导热(4)关于平壁的例题)关于平壁的例题.一维稳态和非稳态导热一维稳态和非稳态导热1 稳态导热稳态导热(4)关于平壁的例题)关于平壁的例题例例题题4:炉炉墙墙内内层层为为粘粘土土砖砖,外外层层为为硅硅藻藻土土砖砖,它它们们的的厚厚度度分分别别 为为 s1=460mm;s2=230mm,导导 热热 系系 数数 分分 别别 为为:1=0.7+0.6410-3t W/m;2=0.14+0.1210-3t W/m。炉炉墙墙两两侧侧表表面面温温度度各各为为t1=1400;t3=100,求求稳稳态态时时通通过过炉炉墙墙的导热通量和两层砖交界处的温度。的导热通量和两层砖交界处的温度。解解:按按试试算算法法,假假定定交交界界面面温温度度为为t2=900,计计算算每每层层砖砖的的导热系数导热系数.一维稳态和非稳态导热一维稳态和非稳态导热计算通过炉墙的计算通过炉墙的热通量和界面温度热通量和界面温度分别为:分别为:将将求求出出的的t2与与原原假假设设的的t2相相比比较较,若若两两者者相相差差甚甚大大,需需重重新新计计算算。重设重设t2=1120,计算的方法同上,中间过程略去,可以得到:,计算的方法同上,中间过程略去,可以得到:t2与与第第二二次次假假设设的的温温度度值值很很相相近近,故故第第二二次次求求得得的的q和和t2即即为为所所求的计算结果。求的计算结果。1 稳态导热稳态导热(4)关于平壁的例题)关于平壁的例题.一维稳态和非稳态导热一维稳态和非稳态导热计算计算假设单管长度为假设单管长度为l,圆筒壁的外半径小,圆筒壁的外半径小 于长度的于长度的1/10。圆柱坐标系圆柱坐标系:一维、稳态、无内热源、常物性,可得下面一维、稳态、无内热源、常物性,可得下面 的方程,的方程,考虑第一类边界条件考虑第一类边界条件:1 稳态导热稳态导热(5)单层圆筒壁的导热)单层圆筒壁的导热第一类边第一类边界条件:界条件:可得方程:可得方程:.一维稳态和非稳态导热一维稳态和非稳态导热1 稳态导热稳态导热(5)单层圆筒壁的导热)单层圆筒壁的导热应用边界条件:应用边界条件:对该方程积分两次得:对该方程积分两次得:求得系数:求得系数:带入第二次积分结果得带入第二次积分结果得圆筒圆筒壁内温度分布:壁内温度分布:.一维稳态和非稳态导热一维稳态和非稳态导热圆筒壁内圆筒壁内温度分布曲线温度分布曲线的形状的形状:圆筒壁内部的圆筒壁内部的热流密度和热流分布热流密度和热流分布 情况:情况:1 稳态导热稳态导热(5)单层圆筒壁的导热)单层圆筒壁的导热.一维稳态和非稳态导热一维稳态和非稳态导热虽然稳态情况,但虽然稳态情况,但热流密度热流密度 q 与半与半径径 r 成反比成反比!长度为长度为l的圆的圆筒壁的筒壁的导热热阻导热热阻:1 稳态导热稳态导热(5)单层圆筒壁的导热)单层圆筒壁的导热.一维稳态和非稳态导热一维稳态和非稳态导热1 稳态导热稳态导热(6)N层圆筒壁的导热层圆筒壁的导热不同材料构成的多层圆筒壁,其导不同材料构成的多层圆筒壁,其导 热热流量热热流量可按总温差和总热阻计算可按总温差和总热阻计算通过单位长度圆筒壁的通过单位长度圆筒壁的热流量热流量.一维稳态和非稳态导热一维稳态和非稳态导热分别考虑单层圆筒壁,分别考虑单层圆筒壁,第三类边界条件第三类边界条件,稳态导热,单位长度热阻稳态导热,单位长度热阻1 稳态导热稳态导热(6)N层圆筒壁的导热层圆筒壁的导热由由单层圆筒壁考虑多单层圆筒壁考虑多层圆筒壁层圆筒壁,见左公式,见左公式.一维稳态和非稳态导热一维稳态和非稳态导热对于平壁对于平壁在平壁上敷上绝热层后,热阻在平壁上敷上绝热层后,热阻:对于圆筒壁对于圆筒壁在管道外敷上绝热层后,热阻:在管道外敷上绝热层后,热阻:讨论:讨论:(1)对于平壁,敷上绝热层后,热阻增加,散热量减少;对于平壁,敷上绝热层后,热阻增加,散热量减少;(2)对于圆筒壁,当管道和绝热材料选定后,对于圆筒壁,当管道和绝热材料选定后,RL仅是仅是dx(绝热层外径)的函数。当(绝热层外径)的函数。当dx增大时,增大时,增大,增大,减减小,总热阻的情况比较复杂。小,总热阻的情况比较复杂。1 稳态导热稳态导热(7)临界绝热层直径)临界绝热层直径.一维稳态和非稳态导热一维稳态和非稳态导热当管道和绝热材料选定后,当管道和绝热材料选定后,RL仅是仅是dx(绝热层外径)的函(绝热层外径)的函数。求极值:数。求极值:将将RL对对dx求导,并令其等于求导,并令其等于0。1 稳态导热稳态导热(7)临界绝热层直径)临界绝热层直径.一维稳态和非稳态导热一维稳态和非稳态导热1 稳态导热稳态导热(7)临界绝热层直径)临界绝热层直径继续求继续求RL对对dx的二阶导数,可得的二阶导数,可得:说明说明dc为是总热阻的极小值,即此时热损失最大。为是总热阻的极小值,即此时热损失最大。说明:说明:(1)(1)管道外径管道外径d d2 2dddc c,则增加绝,则增加绝热层,可以减小热损失。热层,可以减小热损失。.一维稳态和非稳态导热一维稳态和非稳态导热1 稳态导热稳态导热(8)关于圆筒壁的例题)关于圆筒壁的例题例例题题5:有有一一半半径径为为R,具具有有均均匀匀内内热热源源、导导热热系系数数为为常常数数的的长长圆圆柱柱体体。假假定定圆圆柱柱体体表表面面温温度度为为tw,内内热热源源强强度度为为qv,圆圆柱柱体体足足够够长长,可可以以认认为为温温度度仅仅沿沿径径向向变变化,试求稳态导热时圆柱体内温度分布。化,试求稳态导热时圆柱体内温度分布。解解:对对于于一一维维稳稳态态导导热热,柱柱坐坐标标系系的的导导热热微微分分方方程程简简化得到,即化得到,即:.一维稳态和非稳态导热一维稳态和非稳态导热两两个个边边界界条条件件中中:一一个个为为r=R时时,t=tw,由由于于内内热热源源均均匀匀分分布布,圆圆柱柱体体表表面面温温度度均均为为tw,圆圆柱柱体体内内温温度度分分布布对对称称于于中中心心线线,另另一一个个边边界界条条件件可可表表示示为为r=0时时,dt/dr=0。将将微微分分方程分离变量后两次积分,结果为方程分离变量后两次积分,结果为根据边界条件,在根据边界条件,在r=0时,时,dt/dr=0。可得。可得C1=0;利用另一;利用另一个边界条件,在个边界条件,在r=R时,时,t=tw,可得,可得1 稳态导热稳态导热(8)关于圆筒壁的例题)关于圆筒壁的例题圆柱体内圆柱体内温度分布温度分布.一维稳态和非稳态导热一维稳态和非稳态导热1 稳态导热稳态导热(8)关于圆筒壁的例题)关于圆筒壁的例题例例题题6:高高炉炉热热风风管管道道由由四四层层组组成成:最最内内层层为为粘粘土土砖砖,中中间间依依次次为为硅硅藻藻土土砖砖和和石石棉棉板板,最最外外层层为为钢钢板板。厚厚度度分分别别为为(mm):s1=115;s2=230;s3=10;s4=10,导导热热系系数数分分别别为为(W/m):1=1.3;2=0.18;3=0.22;4=52。热热风风管管道道内内径径d1=1m,热热风风平平均均温温度度为为1000,与与内内壁壁的的给给热热系系数数1=31 W/m2,周周围围空空气气温温度度为为20,与与风风管管外外表表面面间间的的给给热热系系数数为为10.5 W/m2,试求每米热风管长的热损失。,试求每米热风管长的热损失。.一维稳态和非稳态导热一维稳态和非稳态导热1 稳态导热稳态导热(8)关于圆筒壁的例题)关于圆筒壁的例题解:解:已知已知d1=1m;d2=d1+2s1=1+0.23=1.23m;d3=d2+2s2=1.23+0.46=1.69m;d4=d3+2s3=1.69+0.02=1.71m;d5=d4+2s4=1.71+0.02=1.73m。tf1=1000;tf2=20可求出每米管长的热损失为:可求出每米管长的热损失为:.一维稳态和非稳态导热一维稳态和非稳态导热1 稳态导热稳态导热(8)关于圆筒壁的例题)关于圆筒壁的例题例例题题7:热热介介质质在在外外径径为为d2=25mm的的管管内内流流动动,为为减减少少热热损损失失,在在管管外外敷敷设设绝绝热热层层,试试问问下下列列二二种种绝绝热热材材料料中中选选用用哪哪一一种种合合适适:(1)石石棉棉制制品品,=0.14 W/m;(2)矿矿渣渣棉棉,=0.058 W/m。假假定定绝绝热热层层外外表表面面与与周周围围空空气气之之间间的的给给热热系系数数2=9 W/m2。解:计算石棉制品和矿渣棉临界绝热层直径分别为解:计算石棉制品和矿渣棉临界绝热层直径分别为 上述条件下用石棉制品作绝热层时,因上述条件下用石棉制品作绝热层时,因d石棉石棉d矿热棉矿热棉,敷设绝,敷设绝热层,热损失将增加,故不合适。而用矿渣棉作绝热层时,热层,热损失将增加,故不合适。而用矿渣棉作绝热层时,d石棉石棉rh,因此,可以忽略对流换热热阻;,因此,可以忽略对流换热热阻;当当Bi0 时,时,rrh,因此,可以忽略导热热阻。,因此,可以忽略导热热阻。.一维稳态和非稳态导热一维稳态和非稳态导热Bi 准数对无限大平壁温度分布的影响准数对无限大平壁温度分布的影响 由于面积热阻与导热热阻的由于面积热阻与导热热阻的相对大小相对大小的不同,平板中温度场的不同,平板中温度场的变化会出现以下三种情形:的变化会出现以下三种情形:2 非稳态导热非稳态导热(5)两个相似准数两个相似准数.一维稳态和非稳态导热一维稳态和非稳态导热当当1/h/,Bi,这这时时,由由于于表表面面对对流流换换热热热热阻阻1/h几几乎乎可可以以忽忽略略,因因而而过过程程一一开开始始平平板板的的表表面面温温度度就就被被冷冷却却到到t。并并随随着着时时间间的的推推移移,整整体体地地下下降,逐渐趋近于降,逐渐趋近于t。当当/t0),已知物体的热物性参数均),已知物体的热物性参数均为常数,介质与物体表面的换热系数为为常数,介质与物体表面的换热系数为。则:。则:微分方程为微分方程为:初始条件为初始条件为:=0,t=t0引入过余温度引入过余温度:=t-tf.一维稳态和非稳态导热一维稳态和非稳态导热3 薄材的非稳态导热薄材的非稳态导热(2)温度分布温度分布由由此此可可见见,描描述述薄薄材材导导热热的的微微分分方方程程是是一一常常微微分分方方程程,它它的的求求解要比偏微分方程的求解简单得多。解要比偏微分方程的求解简单得多。为了便于分析,令为了便于分析,令=t-tf,并令,并令 ,则有,则有相应的初始条件为相应的初始条件为=0,=t0-tf=0求解这一微分方程得求解这一微分方程得=Ce-m根据初始条件很容易得到根据初始条件很容易得到C=0.一维稳态和非稳态导热一维稳态和非稳态导热3 薄材的非稳态导热薄材的非稳态导热(2)温度分布温度分布求解上面微分方程得:求解上面微分方程得:薄材在对流边界条件下加热(或冷却)时,物体薄材在对流边界条件下加热(或冷却)时,物体中温度随时间呈中温度随时间呈指数函数指数函数变化。变化。温度变化的快慢与物体的温度变化的快慢与物体的导热系数无关导热系数无关,只随物,只随物性参数性参数c、,表面换热条件,表面换热条件和几何特性和几何特性(V/F)而改变。)而改变。.一维稳态和非稳态导热一维稳态和非稳态导热3 薄材的非稳态导热薄材的非稳态导热(2)温度分布温度分布则:则:式中,式中,BiV和和FoV准数中的定型尺寸为准数中的定型尺寸为V/F。方程中指数的量纲:方程中指数的量纲:.一维稳态和非稳态导热一维稳态和非稳态导热3 薄材的非稳态导热薄材的非稳态导热(2)温度分布温度分布则有:则有:上式表明:当传热时间上式表明:当传热时间等于等于 时,物体的时,物体的过余温度已经达到了初过余温度已经达到了初始过余温度的始过余温度的36.8。称称 为时间常数,为时间常数,用用c表示。表示。.一维稳态和非稳态导热一维稳态和非稳态导热3 薄材的非稳态导热薄材的非稳态导热(2)温度分布温度分布若导热体的热容量(若导热体的热容量(cV)小、换热条件好()小、换热条件好(大)大),即时间常数,即时间常数(cV/F)小,则导热体的小,则导热体的温度变化温度变化快快。对于测温的热电偶节点,时间常数越小,热电偶对于测温的热电偶节点,时间常数越小,热电偶对流体温度变化的响应越快。这是测温技术所需对流体温度变化的响应越快。这是测温技术所需要的。要的。.一维稳态和非稳态导热一维稳态和非稳态导热3 薄材的非稳态导热薄材的非稳态导热(3)热流量热流量瞬态热流量瞬态热流量:导热体在时间导热体在时间0-内与周围介质交换的内与周围介质交换的总热量总热量:导热体被加热和冷却时,计算公式相同。(为什导热体被加热和冷却时,计算公式相同。(为什么?)么?).一维稳态和非稳态导热一维稳态和非稳态导热3 薄材的非稳态导热薄材的非稳态导热式中,式中,M是考虑是考虑BiV准数中定型尺寸用准数中定型尺寸用V/F表示的一个系表示的一个系数。对于不同几何形状的物体,数。对于不同几何形状的物体,V/F和和M的取值如下表:的取值如下表:(4)集总参数集总参数法的应用条件法的应用条件物体形状物体形状V/FM无限大平板(厚无限大平板(厚2s)s1无限长圆柱体(半径无限长圆柱体(半径R)R/21/2球体(半径球体(半径R)R/31/3.一维稳态和非稳态导热一维稳态和非稳态导热例题例题1 将初始温度为将初始温度为80,直径为,直径为20mm的铜棒突然置的铜棒突然置于温度为于温度为20,流速为,流速为12m/s的风道中,的风道中,5min后铜棒温后铜棒温度降到度降到34。试计算气体与铜棒的换热系数。试计算气体与铜棒的换热系数?已知铜棒的已知铜棒的=8954kg/m3,c=383.1J/kg,=386W/m。解:假定铜棒的冷却过程可按薄材处理。解:假定铜棒的冷却过程可按薄材处理。由由 有:有:3 薄材的非稳态导热薄材的非稳态导热(5)例题例题.一维稳态和非稳态导热一维稳态和非稳态导热然后核算然后核算BiV:由此可见,按薄材处理是合理的。由此可见,按薄材处理是合理的。到目前为止,求解到目前为止,求解的方法的方法:(1)根据定义;根据定义;(2)根据薄材公式。根据薄材公式。3 薄材的非稳态导热薄材的非稳态导热(5)例题例题.一维稳态和非稳态导热一维稳态和非稳态导热内容结构内容结构2 非稳态导热非稳态导热(1)定义及分类)定义及分类(2)温度变化的不同阶段)温度变化的不同阶段(3)温度分布和热量变化)温度分布和热量变化(4)学习非稳态导热的目的)学习非稳态导热的目的(5)两个相似准数)两个相似准数3 薄材的非稳态导热薄材的非稳态导热(1)定义)定义 (2)温度分布)温度分布(3)热流量)热流量(4)集总参数法的应用条件)集总参数法的应用条件(5)例题)例题4 半无限大的物体半无限大的物体 5 有限厚物体的一维非稳态导热有限厚物体的一维非稳态导热(1)求解)求解(2)查图)查图(3)例题)例题1 稳态导热稳态导热(1)概述)概述(2)单层平壁的导热)单层平壁的导热(3)多层平壁的导热)多层平壁的导热(4)关于平壁的例题)关于平壁的例题 (5)单层圆筒壁的导热)单层圆筒壁的导热(6)N层圆筒壁的导热层圆筒壁的导热(7)关于圆筒壁的例题)关于圆筒壁的例题(1)概念)概念 (2)求解过程)求解过程(3)例题)例题.一维稳态和非稳态导热一维稳态和非稳态导热半半无无限限大大物物体体是是指指受受热热面面位位于于x=0处处,而而厚厚度度为为x=+的的物物体体。在在工工程程上上,对对一一个个有有限限厚厚的的物物体体,当当界界面面上上发发生生温温度度变变化化,而而在在我我们们所所考考虑虑的的时时间间范范围围内内,其其影影响响深深度度远远小于物体本身厚度时,该物体可视为小于物体本身厚度时,该物体可视为半无限大物体半无限大物体。即即,所所研研究究物物体体是是否否可可以以看看做做半半无无限限大大物物体体,受受时时间间和和坐标两个因素坐标两个因素的影响。的影响。求解半无限大物体。求解半无限大物体。有有一一初初始始温温度度(t0)均均匀匀,热热物物性性参参数数为为常常数数,无无内内热热源源的的半半无无限限大大物物体体,加加热热开开始始时时表表面面(x=0处处)温温度度突突然然升升至至tw,并保持不变,求物体内的温度分布。,并保持不变,求物体内的温度分布。4 半无限大的物体半无限大的物体(1)概念概念.一维稳态和非稳态导热一维稳态和非稳态导热微分方程微分方程:初始条件初始条件:=0,0 x,t=t0边界条件边界条件:0,x=0,t=tw 0,x=,t=t0 解得:解得:三个量三个量x、t、,已知其中任意两个,便可求得第三个量。,已知其中任意两个,便可求得第三个量。4 半无限大的物体半无限大的物体(2)求解过程求解过程称为高斯误差函数称为高斯误差函数.一维稳态和非稳态导热一维稳态和非稳态导热当当 时时,即即t=t0。表表明明在在x处处的的温温度度尚尚未未变变化化,仍为初始温度仍为初始温度t0。(1)确定经过确定经过时间后壁内温度开始变化的距离;时间后壁内温度开始变化的距离;(2)确定确定x处温度开始变化所需的时间。处温度开始变化所需的时间。时刻通过表面时刻通过表面(x=0处处)的导热通量。的导热通量。应用傅立叶定律。应用傅立叶定律。=0到到=时间内,在时间内,在x=0处通过单位表面积的总热量。处通过单位表面积的总热量。4 半无限大的物体半无限大的物体(2)求解过程求解过程.一维稳态和非稳态导热一维稳态和非稳态导热例题例题2 用热电偶测得高炉基础内某点的温度为用热电偶测得高炉基础内某点的温度为350,测定时间,测定时间离开炉离开炉120h,若炉缸底部表面温度为,若炉缸底部表面温度为1500,炉基材料的热扩散,炉基材料的热扩散系数为系数为0.002 m2/h,炉基开始温度为,炉基开始温度为20,求炉缸底部表面到该,求炉缸底部表面到该测温点的距离。测温点的距离。解:高炉基础可视为半无限大物体,界面解:高炉基础可视为半无限大物体,界面(x=0处处)为炉缸底部表面。为炉缸底部表面。因为已知表面温度,故是第一类边界条件的问题。因为已知表面温度,故是第一类边界条件的问题。已知:已知:t0=20;tw=1500;t=350,根据半无限大公式可以,根据半无限大公式可以计算出高斯误差函数:计算出高斯误差函数:4 半无限大的物体半无限大的物体(3)例题例题.一维稳态和非稳态导热一维稳态和非稳态导热首先计算首先计算Biv判断热电偶接点是否为薄材。判断热电偶接点是否为薄材。由相关数据表可查得:当由相关数据表可查得:当 4 半无限大的物体半无限大的物体(3)例题例题.一维稳态和非稳态导热一维稳态和非稳态导热例题例题3 1650的钢水很快注入一直径为的钢水很快注入一直径为3m,高度为,高度为3.6m的钢包,的钢包,钢包初始壁温均匀为钢包初始壁温均匀为650,包内钢水深度为,包内钢水深度为2.4m。已知包壁材。已知包壁材料的热物性参数为:料的热物性参数为:=1.04W/m,=2700kg/m3,cp=1.25 kJ/kg。试求在开始。试求在开始15min内:内:(1)由于导热传入包壁的热量;由于导热传入包壁的热量;(2)包壁内热量传递的距离。包壁内热量传递的距离。解:假定钢包壁可视作半无限大物体,在钢水和包壁界面解:假定钢包壁可视作半无限大物体,在钢水和包壁界面(x=0)处处温度不变,恒为钢水温度。一般来说,包壁厚度与钢包直径相比温度不变,恒为钢水温度。一般来说,包壁厚度与钢包直径相比很小,可按平壁处理。很小,可按平壁处理。4 半无限大的物体半无限大的物体(3)例题例题.一维稳态和非稳态导热一维稳态和非稳态导热由此可见,开始由此可见,开始15min内,热量传递的距离比一般钢包壁的耐内,热量传递的距离比一般钢包壁的耐火材料厚度小,故按半无限大物体计算是可以的。火材料厚度小,故按半无限大物体计算是可以的。开始开始15min内传入包壁的热量为:内传入包壁的热量为:由热量传递距离可计算得:由热量传递距离可计算得:4 半无限大的物体半无限大的物体(3)例题例题.一维稳态和非稳态导热一维稳态和非稳态导热内容结构内容结构2 非稳态导热非稳态导热(1)定义及分类)定义及分类(2)温度变化的不同阶段)温度变化的不同阶段(3)温度分布和热量变化)温度分布和热量变化(4)学习非稳态导热的目的)学习非稳态导热的目的(5)两个相似准数)两个相似准数3 薄材的非稳态导热薄材的非稳态导热(1)定义)定义 (2)温度分布)温度分布(3)热流量)热流量(4)集总参数法的应用条件)集总参数法的应用条件(5)例题)例题4 半无限大的物体半无限大的物体 5 有限厚物体的一维非稳态导热有限厚物体的一维非稳态导热(1)求解)求解(2)查图)查图(3)例题)例题1 稳态导热稳态导热(1)概述)概述(2)单层平壁的导热)单层平壁的导热(3)多层平壁的导热)多层平壁的导热(4)关于平壁的例题)关于平壁的例题 (5)单层圆筒壁的导热)单层圆筒壁的导热(6)N层圆筒壁的导热层圆筒壁的导热(7)关于圆筒壁的例题)关于圆筒壁的例题(1)概念)概念 (2)求解过程)求解过程(3)例题)例题.一维稳态和非稳态导热一维稳态和非稳态导热设有一厚度为设有一厚度为2s的无限大平板,其初始温度(的无限大平板,其初始温度(t0)均匀,)均匀,热物性参数为常数,无内热源,开始时突然把平板周围介热物性参数为常数,无内热源,开始时突然把平板周围介质温度提高到质温度提高到tf并保持不变,平板与介质间的换热系数为并保持不变,平板与介质间的换热系数为,求物体内的温度分布。(将坐标系的,求物体内的温度分布。(将坐标系的y轴置于平板的中轴置于平板的中心截面上)心截面上)微分方程微分方程:初始条件初始条件:=0,0 xs,t=t0边界条件边界条件:5 有限厚物体的一维非稳态导热有限厚物体的一维非稳态导热(1)求解)求解.一维稳态和非稳态导热一维稳态和非稳态导热引入过余温度引入过余温度=t-tf,应用分离变量法求解。,应用分离变量法求解。求解得温度分布公式:求解得温度分布公式:ns为为Bi的函数,故的函数,故对于对于无限大平板无限大平板,Fo=a/s2。5 有限厚物体的一维非稳态导热有限厚物体的一维非稳态导热(1)求解)求解.一维稳态和非稳态导热一维稳态和非稳态导热工程上,当工程上,当Fo0.2,取级数的首项,误差小于,取级数的首项,误差小于1%。则有:。则有:当当Fo0.2,平板中任一点的过余温度与平板中心的过余温,平板中任一点的过余温度与平板中心的过余温度之比为:度之比为:说明:当说明:当Fo0.2以后,虽然以后,虽然(x,)和和m()各自均与各自均与有关,有关,但其比值与但其比值与无关,仅与(无关,仅与(x/s)及)及Bi有关。有关。5 有限厚物体的一维非稳态导热有限厚物体的一维非稳态导热(1)求解)求解.一维稳态和非稳态导热一维稳态和非稳态导热平板得到(或失去)的热量公式平板得到(或失去)的热量公式 平板由初始温度平板由初始温度t0变化到周围介质温度变化到周围介质温度tf所交换的所交换的热量热量:在时间在时间0-范围内,整个平板得到(或失去)的热范围内,整个平板得到(或失去)的热量:量:5 有限厚物体的一维非稳态导热有限厚物体的一维非稳态导热(1)求解)求解.一维稳态和非稳态导热一维稳态和非稳态导热由上面温度分布可知,当由上面温度分布可知,当Fo0.2时:时:即平板中即平板中任一点任一点的过余温度与的过余温度与平板中心平板中心的过余温度之的过余温度之比与比与无关,只取决于几何位置和无关,只取决于几何位置和Bi数。数。为了便于计算,工程上广泛采用按分析解的级数的第为了便于计算,工程上广泛采用按分析解的级数的第一项而绘制的图线(一项而绘制的图线(诺模图诺模图),其中用于确定温度分),其中用于确定温度分布的图线称为布的图线称为海斯勒(海斯勒(Heisler)图)图。5 有限厚物体的一维非稳态导热有限厚物体的一维非稳态导热(2)查图)查图.一维稳态和非稳态导热一维稳态和非稳态导热方法方法:1、温度的确定温度的确定:先给出先给出m/0随随Fo及及Bi变化的曲线,然后根据上变化的曲线,然后根据上式确定式确定/m的值,平板中任一点的温度便可确定。的值,平板中任一点的温度便可确定。2、热交换量的确定热交换量的确定:作出作出Q/Q0=f(Fo,Bi)的图线。的图线。5 有限厚物体的一维非稳态导热有限厚物体的一维非稳态导热(2)查图)查图.一维稳态和非稳态导热一维稳态和非稳态导热无限大平板的中心温度无限大平板的中心温度5 有限厚物体的一维非稳态导热有限厚物体的一维非稳态导热(2)查图)查图.一维稳态和非稳态导热一维稳态和非稳态导热无限大平板无限大平板5 有限厚物体的一维非稳态导热有限厚物体的一维非稳态导热(2)查图)查图.一维稳态和非稳态导热一维稳态和非稳态导热5 有限厚物体的一维非稳态导热有限厚物体的一维非稳态导热(2)查图)查图.一维稳态和非稳态导热一维稳态和非稳态导热例例题题4 厚厚度度为为200mm的的钢钢坯坯,在在温温度度为为1000的的加加热热炉炉内内双双面面对对称称加加热热,假假定定铸铸坯坯初初始始温温度度为为20,在在加加热热过过程程中中炉炉内内平平均均给给热热系系数数为为=174W/m2,钢钢的的热热物物性性参参数数为为=34.8W/m,a=0.55610-5m2/s,求求(1)钢钢坯坯在在炉炉内内加加热热36min时时钢钢坯坯的的中中心心和和表表面面温温度度;(2)在在此此时时间间内内钢钢坯坯获获得得的的热热量量。(3)若若钢钢坯坯厚厚度度为为20mm,36min时时钢钢坯坯的的中中心心和和表表面面温温度为?度为?解解:因因钢钢坯坯在在炉炉内内紧紧密密排排列列,故故相相当当于于平平板板状状物物体体的的加加热热。双双面面对对称称加加热热时时,其其透透热热深深度度s=0.2/2=0.1m,因因此此,在在此此条条件件下:下:5 有限厚物体的一维非稳态导热有限厚物体的一维非稳态导热(3)例题)例题.一维稳态和非稳态导热一维稳态和非稳态导热先计算中心温度,根据先计算中心温度,根据1/Bi和和Fo查图,得查图,得 所以钢坯中心温度为所以钢坯中心温度为tm=tf+0.64(t0-tf)=1000+0.64(20-1000)=372.8 然后求钢坯表面温度,查图,当然后求钢坯表面温度,查图,当 时,时,故表面温度为故表面温度为 tw=tf+0.8(tm-tf)=1000+0.8(372.8-1000)=498.245 有限厚物体的一维非稳态导热有限厚物体的一维非稳态导热(3)例题)例题.一维稳态和非稳态导热一维稳态和非稳态导热1.非稳态导热的分类及各类型的特点。非稳态导热的分类及各类型的特点。2.Bi 准则数准则数,Fo准则数的定义及物理意义。准则数的定义及物理意义。3.Bi0 和和Bi 各代表什么样的换热条件各代表什么样的换热条件?4.集总参数法的物理意义及应用条件。集总参数法的物理意义及应用条件。5.使使用用集集总总参参数数法法,物物体体内内部部温温度度变变化化及及换换热热量量的的计计算算方方法法。时时间常数的定义及物理意义间常数的定义及物理意义.6.非稳态导热的正规状况阶段的物理意义及数学计算上的特点。非稳态导热的正规状况阶段的物理意义及数学计算上的特点。7.非稳态导热的正规状况阶段的判断条件。非稳态导热的正规状况阶段的判断条件。8.无无限限大大平平板板和和半半无无限限大大平平板板的的物物理理概概念念。半半无无限限大大平平板板的的概概念念如何应用在实际工程问题中。如何应用在实际工程问题中。9.如如何何用用查查图图法法计计算算无无限限大大平平板板非非稳稳态态导导热热正正规规状状况况阶阶段段的的换换热热问题问题?10.如何用近似拟合公式法计算无限大平板非稳态导热问题如何用近似拟合公式法计算无限大平板非稳态导热问题?11.半无限大平板非稳态导热的计算方法。半无限大平板非稳态导热的计算方法。本章思考题本章思考题.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第三 稳态 导热
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文