数列求和大题专训含答案.pdf
《数列求和大题专训含答案.pdf》由会员分享,可在线阅读,更多相关《数列求和大题专训含答案.pdf(16页珍藏版)》请在咨信网上搜索。
必修必修 5 数列求和大题数列求和大题 B 卷卷一解答题(共一解答题(共 30 小题)小题)1已知数列an满足:Sn=1an(nN*),其中 Sn为数列an的前 n 项和()试求an的通项公式;()若数列bn满足:(nN*),试求bn的前 n 项和公式 Tn2在ABC 中,角 A,B,C 的对应边分别是 a,b,c 满足 b2+c2=bc+a2()求角 A 的大小;()已知等差数列an的公差不为零,若 a1cosA=1,且 a2,a4,a8成等比数列,求的前 n 项和 Sn3已知数列an是等差数列,且 a1=2,a1+a2+a3=12(1)求数列an的通项公式;(2)令 bn=an3n,求数列bn的前 n 项和 Sn4等差数列an的前 n 项和为 Sn,数列bn是等比数列,满足a1=3,b1=1,b2+S2=10,a52b2=a3()求数列an和bn的通项公式;()令 Cn=设数列cn的前 n 项和 Tn,求 T2n5设数列an的各项均为正数,它的前 n 项的和为 Sn,点(an,Sn)在函数 y=x2+x+的图象上;数列bn满足 b1=a1,bn+1(an+1an)=bn其中 nN*()求数列an和bn的通项公式;()设 cn=,求证:数列cn的前 n 项的和 Tn(nN*)6已知数列an前 n 项和 Sn满足:2Sn+an=1()求数列an的通项公式;()设 bn=,数列bn的前 n 项和为 Tn,求证:Tn7已知数列an的前 n 项和是 Sn,且 Sn+an=1(nN*)()求数列an的通项公式;()设 bn=log4(1Sn+1)(nN*),Tn=+,求使 Tn成立的最小的正整数 n 的值8在等比数列an中,a3=,S3=()求an的通项公式;()记 bn=log2,且bn为递增数列,若 Cn=,求证:C1+C2+C3+Cn9设数列an是等差数列,数列bn的前 n 项和 Sn满足 Sn=(bn1)且 a2=b1,a5=b2()求数列an和bn的通项公式;()设 cn=anbn,设 Tn为cn的前 n 项和,求 Tn10在等比数列an中,an0(nN*),公比 q(0,1),a1a5+2a3a5+a2a8=25,且 2 是 a3与 a5的等比中项,(1)求数列an的通项公式;(2)设 bn=log2an,数列bn的前 n 项和为 Sn,当最大时,求 n 的值11已知正项数列an的前 n 项和为 Sn,且 Sn,an,成等差数列(1)证明数列an是等比数列;(2)若 bn=log2an+3,求数列的前 n 项和 Tn12已知an是正项等差数列,an的前 n 项和记为 Sn,a1=3,a2a3=S5(1)求an的通项公式;(2)设数列bn的通项为 bn=,求数列bn的前 n 项和 Tn必修必修 5 数列求和大题数列求和大题 B 卷卷参考答案与试题解析参考答案与试题解析一解答题(共一解答题(共 30 小题)小题)1(2016衡水校级模拟)已知数列an满足:Sn=1an(nN*),其中 Sn为数列an的前 n项和()试求an的通项公式;()若数列bn满足:(nN*),试求bn的前 n 项和公式 Tn【解答】解:()Sn=1anSn+1=1an+1得 an+1=an+1+anan;n=1 时,a1=1a1a1=(6 分)()因为 bn=n2n所以 Tn=12+222+323+n2n故 2Tn=122+223+n2n+1Tn=2+22+23+2nn2n+1=整理得 Tn=(n1)2n+1+2(12 分)2(2016渭南一模)在ABC 中,角 A,B,C 的对应边分别是 a,b,c 满足b2+c2=bc+a2()求角 A 的大小;()已知等差数列an的公差不为零,若 a1cosA=1,且 a2,a4,a8成等比数列,求的前 n 项和 Sn【解答】解:()b2+c2a2=bc,=,cosA=,A(0,),A=()设an的公差为 d,a1cosA=1,且 a2,a4,a8成等比数列,a1=2,且=a2a8,(a1+3d)2=(a1+d)(a1+7d),且 d0,解得 d=2,an=2n,=,Sn=(1)+()+()+()=1=3(2016扬州校级一模)已知数列an是等差数列,且 a1=2,a1+a2+a3=12(1)求数列an的通项公式;(2)令 bn=an3n,求数列bn的前 n 项和 Sn【解答】解:(1)数列an是等差数列,且 a1=2,a1+a2+a3=12,2+2+d+2+2d=12,解得 d=2,an=2+(n1)2=2n(2)an=2n,bn=an3n=2n3n,Sn=23+432+633+2(n1)3n1+2n3n,3Sn=232+433+634+2(n1)3n+2n3n+1,得2Sn=6+232+233+234+23n2n3n+1=22n3n+1=3n+12n3n+13=(12n)3n+13Sn=+4(2016日照二模)等差数列an的前 n 项和为 Sn,数列bn是等比数列,满足a1=3,b1=1,b2+S2=10,a52b2=a3()求数列an和bn的通项公式;()令 Cn=设数列cn的前 n 项和 Tn,求 T2n【解答】解:()设数列an的公差为 d,数列bn的公比为 q,由 b2+S2=10,a52b2=a3得,解得an=3+2(n1)=2n+1,()由 a1=3,an=2n+1 得 Sn=n(n+2),则 n 为奇数,cn=,n 为偶数,cn=2n1T2n=(c1+c3+c2n1)+(c2+c4+c2n)=5(2016 春绵阳校级月考)设数列an的各项均为正数,它的前 n 项的和为 Sn,点(an,Sn)在函数 y=x2+x+的图象上;数列bn满足 b1=a1,bn+1(an+1an)=bn其中nN*()求数列an和bn的通项公式;()设 cn=,求证:数列cn的前 n 项的和 Tn(nN*)【解答】解:(1)点(an,Sn)在函数 y=x2+x+的图象上,当 n2 时,得:,即,数列an的各项均为正数,anan1=4(n2),又 a1=2,an=4n2;b1=a1,bn+1(an+1an)=bn,;(2),4Tn=4+342+543+(2n3)4n1+(2n1)4n,两式相减得,6(2016日照一模)已知数列an前 n 项和 Sn满足:2Sn+an=1()求数列an的通项公式;()设 bn=,数列bn的前 n 项和为 Tn,求证:Tn【解答】(I)解:2Sn+an=1,当 n2 时,2Sn1+an1=1,2an+anan1=0,化为当 n=1 时,2a1+a1=1,a1=数列an是等比数列,首项与公比都为(II)证明:bn=,数列bn的前 n 项和为 Tn=+=Tn7(2016漳州二模)已知数列an的前 n 项和是 Sn,且 Sn+an=1(nN*)()求数列an的通项公式;()设 bn=log4(1Sn+1)(nN*),Tn=+,求使 Tn成立的最小的正整数 n 的值【解答】解:()当 n=1 时,a1=S1,由 S1+a1=1a1=,当 n2 时,Sn+an=1,Sn1+an1=1,得=0,即 an=an1,an是以为首项,为公比的等比数列 故 an=3(nN*);()由(1)知 1Sn+1=,bn=log4(1Sn+1)=(n+1),=,Tn=+=()+()+()=,n2014,故使 Tn成立的最小的正整数 n 的值 n=20148(2016淮北一模)在等比数列an中,a3=,S3=()求an的通项公式;()记 bn=log2,且bn为递增数列,若 Cn=,求证:C1+C2+C3+Cn【解答】解:()a3=,S3=,当 q=1 时,S3=3a1=,满足条件,q=1当 q1 时,a1q2=,=,解得 a1=6,q=综上可得:an=或 an=6()n1;()证明:由题意可得 bn=log2=log2=log222n=2n,则 Cn=(),即有 C1+C2+C3+Cn=(1+)=(1)=故原不等式成立9(2016张掖校级模拟)设数列an是等差数列,数列bn的前 n 项和 Sn满足Sn=(bn1)且 a2=b1,a5=b2()求数列an和bn的通项公式;()设 cn=anbn,设 Tn为cn的前 n 项和,求 Tn【解答】解:()数列bn的前 n 项和 Sn满足 Sn=(bn1),b1=S1=,解得 b1=3当 n2 时,bn=SnSn1=,化为 bn=3bn1数列bn为等比数列,a2=b1=3,a5=b2=9设等差数列an的公差为 d,解得 d=2,a1=1an=2n1综上可得:an=2n1,()cn=anbn=(2n1)3nTn=3+332+533+(2n3)3n1+(2n1)3n,3Tn=32+333+(2n3)3n+(2n1)3n+12Tn=3+232+233+23n(2n1)3n+1=(2n1)3n+13=(22n)3n+1610(2016泉州校级模拟)在等比数列an中,an0(nN*),公比 q(0,1),a1a5+2a3a5+a2a8=25,且 2 是 a3与 a5的等比中项,(1)求数列an的通项公式;(2)设 bn=log2an,数列bn的前 n 项和为 Sn,当最大时,求 n 的值【解答】解:(1)a1a5+2a3a5+a2a8=25,且 2 是 a3与 a5的等比中项a12q4+2a12q6+a12q8=25 a12q6=4 解的故数列an的通项公式;(2)bn=log2an=5n=4(n1),数列为等差数列,其通项为=4(n1),当 n=9 时最大时,n=8 或 9故 n=8 或 911(2016福安市校级模拟)已知正项数列an的前 n 项和为 Sn,且 Sn,an,成等差数列(1)证明数列an是等比数列;(2)若 bn=log2an+3,求数列的前 n 项和 Tn【解答】解:(1)证明:由 Sn,an,成等差数列,知 2an=Sn+,当 n=1 时,有,当 n2 时,Sn=2an,Sn1=2an1,两式相减得 an=2an2an1(n2),即 an=2an1,由于an为正项数列,an10,于是有=2(n2),数列an从第二项起,每一项与它前一项之比都是同一个常数 2,数列an是以为首项,以 2 为公比的等比数列(2)解:由(1)知=2n2,bn=log2an+3=n+1,=,Tn=()+()+()=12(2016禹州市三模)已知an是正项等差数列,an的前 n 项和记为Sn,a1=3,a2a3=S5(1)求an的通项公式;(2)设数列bn的通项为 bn=,求数列bn的前 n 项和 Tn【解答】解:(1)设等差数列an的公差为 d,a1=3,a2a3=S5(3+d)(3+2d)=,解得 d=2,或(舍去)an=3+2(n1)=2n+1(2)Sn=n2+2nbn=数列bn的前 n 项和 Tn=+=- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数列 求和 大题专训含 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文