图像预处理技术本科毕业论文.doc
《图像预处理技术本科毕业论文.doc》由会员分享,可在线阅读,更多相关《图像预处理技术本科毕业论文.doc(30页珍藏版)》请在咨信网上搜索。
1、图像预处理技术毕业论文图像预处理技术毕业论文 题目:图像预处理技术概述 院系: 信息工程学院 专业:计算机科学与技术 摘要图像预处理技术就是在对图像进行正式处理前所做的一系列操作,因为图像在传输过程和存储过程中难免会受到某种程度的破坏和各种各样的噪声的污染,导致图片丧失了本质或者偏离了人们的需求,而这就需要一系列的预处理操作来消除图像受到的影响。总的来说图像预处理技术分为两大方面,即图像增强和图像复原技术。图像增强技术在图像预处理中占有较大的比重,是图像处理所必须的步骤,它与图像复原的不同之处在于图像复原是以恢复图像原来的本质为目的,而图像增强是以突出人们需要的特征并且弱化不需要的特征为原理的
2、。图像增强的方法很多,有灰度变换、直方图修正、图像平滑去噪、伪彩色处理等等。灰度变换是图像增强技术中的一种简单的点运算处理技术,而直方图修正则是基于灰度变换而来的能够更好的显示和处理图像,然而上述两种只能够处理一些要求不高的图像,去噪功能很弱。而图像平滑减噪则是图像增强的主要方面,是以对图像进行平滑和去噪为目的的最常用的预处理方法,在现代社会图像预处理研究中有着举足轻重的作用。本文先着手介绍图像预处理的基础知识和灰度变换、直方图修正这两种图像预处理方法的原理,而后重点介绍了几种噪声的模型和基于这些噪声的平滑去噪的方法及其原理,并分析其优缺点。最后以基于中值滤波的图像平滑去噪方法为基础,提出一种
3、自适应中值滤波算法并进行探讨。关键词:图像预处理,图像增强,平滑去噪,中值滤波AbstractImage pre-processing technology is made before the formal processing of the image series of operations, because the image during transmission and storage process will inevitably be some degree of damage and a variety of noise pollution, resulting in pic
4、tures lost the nature of or deviation from the peoples needs, which requires a series of preprocessing operations to eliminate the impact of the image. Overall image pre-processing technology is divided into two aspects, namely, image enhancement and image restoration techniques. Image enhancement t
5、echniques to account for a large proportion of the image pre-processing is a necessary step in the image processing, image restoration is to image restoration is to restore the original image of the essence for the purpose of image enhancement is based on the prominent people need characteristics an
6、d weaken the unwanted characteristics of the principle. Image enhancement method, there are many gray level transformation, histogram equalization, image denoising, pseudo-color processing. Gray-scale transformation is the basis and foundation of the image enhancement technology basically all image
7、enhancement and gray-scale transformation. Image denoising, image enhancement, plays an important role in modern society. This article first started to introduce the basic theory of the basic knowledge and the gray-scale transformation of the image pre-processing, after the focus of several denoisin
8、g methods and principles, at the same time they also do some basic comparisons, finally, based on the median filter image denoising method based on, to explore the median filtering of room for improvement.Key Words: image pre-processing, image enhancement, image denoising, median filter目录第一章 绪论51.1课
9、题研究的目的意义51.2课题研究的国内外现状及应用51.3论文安排及主要研究问题7第二章 图像预处理基础72.1图像预处理基础知识72.2图像增强技术82.3图像复原技术82.4图像去噪质量评价标准92.5 matlab软件与图像预处理10第三章 图像灰度化及灰度变换113.1图像灰度化113.1.1灰度的概念113.1.2图像灰度化介绍113.1.3图像灰度化的实现123.1.4灰度化实现例子123.2灰度变换133.2.1灰度变换概念143.2.2灰度变换的分类143.2.3灰度变换实例16第四章 图像平滑去噪174.1噪声基本介绍174.2图像噪声模型184.3图像平滑去噪194.3.1
10、局部平滑法(均值滤波)204.3.2灰度K点平均法224.3.3最大均匀性平滑254.4算法总结29第五章 总结与展望30致谢30引用文献31第一章 绪论1.1课题研究的目的意义冈萨雷斯曾在其著作中提到,视觉是人类感觉中最高级的,而图像又在人类的感知中起着重要的作用。图像作为一种重要的信息源,通过对图像的处理和预处理可以帮助我们了解信息的内涵,增强对信息的把握度,然而图像容易受到损坏或噪声污染,失去原来的信息,因此图像预处理就是在这一需求下应运而生的。图像预处理作为图像处理的重要组成部分,对于人们获得货真价实的图像信息以及复原图像本来的面目具有决定性的作用。图像预处理顾名思义就是在图像分析中,
11、对我们输入的图像进行特征抽取、分割及匹配前所进行的处理。进行图像预处理主要目的是为了消除图像中无关紧要的信息,恢复有用的真实的信息,增强相关信息的可检测性和最大限度地简化我们需要的数据,从而增加特征抽取、图像分割、匹配和识别等后续图像处理步骤的可靠性。因此对图像进行预处理就成了人们获得图像信息的首要解决的事情,然而人们对于图像预处理的知识了解不是很多,而且图像预处理方法繁多,单单就平滑处理来说就有好多种方法,它们相比有哪些优缺点,以及中值滤波有何改进之处,这就是本文要探讨和研究的地方,当然对于图像预处理来说是一个广阔的学科,应用广,分类细,但是远远不能满足社会当今的需求,自身也在不断的完善和发
12、展,有很多新的方面需要探索。本文只就一些图像预处理中平滑处理及中值滤波、均值滤波的主要方法和算法进行分析,然后以中值滤波为例进行探讨并总结归纳出观点,以此来给人们提供一些了解和学习图像预处理的基础性知识,方便以后更系统的学习图像预处理。1.2课题研究的国内外现状及应用目前人类已经进入一个高速发展的信息时代,有80%的信息来自图像,科学研究和技术应用中,图像处理技术已成为不可缺少的手段。国外最早的数字图像处理技术出现在20世纪50年代末,当时的电子计算机技术已经发展到一定水平,人们开始利用它处理图像信息,而数字图形处理作为一门独立的学科形成于20世纪60年代初期。早期的图像处理的主要是为了改善图
13、像的质量,首次获得实际成功应用的是美国喷气推进实验室。他们对航天探测器发回的几千张月球图片进行了图像处理,比如图像几何校正、灰度变换、图像平滑减噪、直方图修正等等并由计算机成功的绘制出了月球表面地图,为人类的登月梦想奠定了基础,也推动了数字图像处理这门学科的出现。此后世界上许多机构也加强了对图像处理技术的研究,同时图像处理的应用范围也从空间研究扩展到各个领域,特别是在医学上取得了巨大的成就。从1970以后,随着计算机和人工智能的迅速发展,数字图像处理技术向着更高、更深的层次发展。人们开始研究如何利用计算机系统的解释处理图像,这类被称为图像理解或者计算机视觉。发达国家投入了大量的人力物力来研究这
14、项技术,取得了不少重要的成果,其中比较有代表性的成果是70年代 Marr提出的视觉计算理论,此理论成为计算机视觉领域的主导思想。当前,由于计算机技术的飞速发展,图像处理总的发展研究趋势是以数字处理为主,因为这种方法有处理精度高、灰阶多、能进行复杂的非线性运算、重复性好等许多优点。数字图像处理实质上是计算机技术、信息论和信号处理相结合的综合性应用学科,与其它学科有着密切的关系。图像去噪就是数字图像处理技术中的重要技术之一。近些年,国内外发表的数字图像预处理方面的论文提出了很多卓有成效的对图像处理的模型或方法,其中有代表性的是基于结构的方法和基于纹理合成的方法。这些方法都是通过建立数学模型来对图像
15、进行增强和复原。其中最主要的是图像去噪,图像去噪的方法从不同处理域的角度可以划分空域和频域两种处理方法:前者是在图像本身存在的二维空间里对其进行处理;而后者则是用一组正交函数系来逼近原信号函数,获得相应的系数,将对原信号的分析转化到了系数空间域,即频域中进行。空间域的线性滤波算法理论发展较为成熟,数字分析简单,对滤除与信号不相关的随机噪声效果显著,但是它本身存在着明显的缺陷,如需要随机噪声的先验统计知识,对图像边缘细节保护能力较差等,特别是后者使得线性滤波无法很好地适应于图像的噪声滤除处理。与线性滤波相对应的非线性滤波大都考虑到了人的视觉标准和最佳滤波准则,提高了图像分辨率和边缘保护能力,特别
16、是一些改进后的非线性滤波方法一般都具有了一定的自适应性,这就使得非线性滤波的功能更为强大,可以广泛地应用到医学、遥感等领域的图像处理中。1971年,图基提出了中值滤波的思想,并首先应用与时间序列的分析中,后来这种方法引入到图像处理中,用来滤除图像的噪声,收到了良好的效果。随之而来的是各种中值滤波的改进方案。其中有一种被称为自适应中值滤波的改进算法引起了人们的关注,这种方法最突出的特点是具有自适应的性能并且对图像的边缘保护能力较传统算法具有明显提高。另外数学形态学和统计学的引入为数字滤波技术开辟了新的途径,1982年Serra出版的专著Image Analysis and Mathematica
17、l Morphology成为数学形态学应用于数字图像领域的咀程碑,由此孕育了很多相天的滤波算法,使得图像滤波算法对图像的处理有了显著提高,边缘保护能力也得到增强。对机器视觉研究的小断深入使人们丌始重视偏微分方程的数学理论,这个领域的实质性创始工作应该归功于Koenderink和Witkin各自独立的工作,他们在图像中引入了尺度空间严格的理论,使之成为偏微分方程在数字图像处理学应用的基础。而在偏微分方程理论应用于数字信号非线性滤波领域中最有影响的人物是Perona和Malikf。两人提出了一种具有非线性滤波能力的偏微分方程,在图像去噪和边缘保护上获得良好效果,后来Weickert基于该理论将这种
18、方程发展成为各向异性扩散方程,进一步提升了去噪能力,并且具有中值滤波、数学形态学滤波以及很多传统算法不具备的图像边缘保护功效。因此这些方法在不久的后来被广泛地应用到了医学、遥感图像的滤波去噪处理之中,获得了令人满意的结果。图像去除脉冲噪声特别是椒盐噪声的方法有很多,其中非线性中值滤波器作为排序统计滤波器的典型代表而广泛应用于数字图像的预处理领域。它与线性平滑滤波器相比,能在一定程度上去除椒盐噪声,同时减少图像模糊。但中值滤波的滤波窗口大小固定,随着图像噪声率的增加,其噪声去除能力下降很快。这是由于随着噪声率的增加,图像中有用的信号点逐渐减少,噪声点因邻域内可用于滤波的信号点太少而不能被有效滤除
19、。因此,人们继续研究在中值滤波基础上提高对图像的滤波能力和边缘保护能力。后来有学者提出了自适应滤波算法,能够依据图像自身的像素改变窗口大小,显著地提升了图像的滤波能力,本文在阅览有关学者的文献基础上对自适应中值滤波的算法及原理进行了探讨,并利用仿真证明其相对于中值滤波的优良之处。此外,自适应中值滤波也有一定的难度,它的算法复杂度较大,运行时间较长,因此,这类滤波器可还有待改进。除了上述方法之外,实际上还有许多学者提出了其他方面的方法,比如自适应加权滤波等,各种改进方法的优劣不一,目的都是为了图像预处理。进入21世纪以后数字图像处理技术发展迅速,到目前为止,图像处理技术在图像通讯、办公室自动化系
20、统、地理信息检测系统、医疗信息、卫星图像传输以及工业分析和自动化方面都应用广泛,随着计算机技术的超快发展和图像处理相关理论的不断完善,图像处理技术在许多新的应用领域受到广泛重视并取得了重大的研究性成果,属于这些领域的有航空航天、生物医学工程、机器人视觉、公安司法、军事制导、文化艺术等等。图像处理技术叶成为了一门引人注目、前景远大的新型学科。图像处理及预处理技术在将来必将得到更多的应用,应用领域也会越来越多,但是总的来说有一下七个方面。(1)空技术方面 图像处理和预处理在航天航空方面的应用,除了对月球、火星图像的处理之外,另一方面在飞机遥感、卫星遥感这一方面应用也很多。现在世界各国利用各类遥感卫
21、星获取所需的图像来进行资源调查勘察、灾害监测、农业和城市规划、军事侦察和气象预报等等。(2)生物医学工程方面 图像处理和预处理在生物医学方面的应用很多,且很有成效。除了CT技术之外,还有就是对应用显微技术的处理分析,如染色体分析、癌细胞识别等等。此外,在X光肺部图像处理、超声波图像处理、心电图分析处理、定向放射等等医学诊断方面都有广泛的应用到图像处理与预处理。(3)通信工程技术方面 在通信领域主要发展方向是声音、文字、图像和数据想合的流媒体通信,其中尤其以图像的通信最为复杂,因图像传输过程中容易遭到损坏和噪声污染,所以对于接收到的图像必须进行预处理以消除图像变质,复原图像或者增强某一特征。(4
22、)工业方面 在工业领域方面图像处理和预处理也有得到巨大的应用,他大大的提高了工作效率,如自动装配线中的质量图像处理,流体力学中的图片处理和分析,在一些恶性环境中的工作及物体的形状和图像的分析和预处理,这些都是不可缺少的过程。(5)军事公安应用方面 在这方面的图像处理和识别主要用于导弹的精确制导、各种侦察照片的解读,以及具有图像运输、存储和显示的军事自动化模拟系统;公安方面主要运用于指纹识别、人脸识别、图像图片的复原和增强、交通监控和事故分析等。目前已经投入运行的高速公路自动收费系统和车牌的自动识别就是图像处理和预处理技术成功应用的例子。(6)文化艺术方面 目前这类方面的应用包括电视画面的图像处
23、理、动画的编辑、电子图像游戏、文物资料照片的复制和修复、运动员动作分析和评分等等,这些应用正在形成一门新的艺术-计算机美术(7)其他方面的应用 图像处理技术已经应用到社会的方方面面,如地理信心系统的二维、三维电子地图的生成及处理修复,教育领域各种辅助教学系统研究制作,流媒体技术领域等等。1.3论文安排及主要研究问题本文主要就图像预处理技术的特点和应用进行概述。第一章为绪论,首先阐述了本论文的研究目的和意义,然后介绍图像预处理技术的国内外研究现状,最后给出了本论文的主要工作安排及结构。第二章介绍图像预处理的基础性知识,包括图像预处理的基本概念,。第三章介绍图像的灰度化及图像处理的几种基本方法的原
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 图像 预处理 技术 本科毕业 论文
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【胜****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【胜****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。