(精选试题附答案)高中数学第三章函数的概念与性质常考点.pdf
《(精选试题附答案)高中数学第三章函数的概念与性质常考点.pdf》由会员分享,可在线阅读,更多相关《(精选试题附答案)高中数学第三章函数的概念与性质常考点.pdf(13页珍藏版)》请在咨信网上搜索。
(名师选题名师选题)(精选试题附答案)高中数学第三章函数的概念与性质常考点(精选试题附答案)高中数学第三章函数的概念与性质常考点 单选题 1、已知函数()对于任意、,总有()+()=(+)+2,且当 0时,()2,若已知(2)=3,则不等式()+(2 2)6的解集为()A(2,+)B(1,+)C(3,+)D(4,+)答案:A 分析:设()=()2,分析出函数()为上的增函数,将所求不等式变形为(3 2)(4),可得出3 2 4,即可求得原不等式的解集.令()=()2,则()=()+2,对任意的、,总有()+()=(+)+2,则()+()=(+),令=0,可得()+(0)=(),可得(0)=0,令=时,则由()+()=(0)=0,即()=(),当 0时,()2,即()0,任取1、2 且1 2,则(1)+(2)=(1 2)0,即(1)(2)0,即(1)(2),所以,函数()在上为增函数,且有(2)=(2)2=1,由()+(2 2)6,可得()+(2 2)+4 6,即()+(2 2)2(2),所以,(3 2)2(2)=(4),所以,3 2 4,解得 2.因此,不等式()+(2 2)6的解集为(2,+).故选:A.2、已知函数(+2)的定义域为(3,4),则函数()=()31的定义域为()A(13,4)B(13,2)C(13,6)D(13,1)答案:C 分析:根据抽象函数的定义域的求解,结合具体函数单调性的求解即可.因为函数(+2)的定义域为(3,4),所以()的定义域为(1,6).又因为3 1 0,即 13,所以函数()的定义域为(13,6).故选:C.3、已知函数f(x2+1)x4,则函数yf(x)的解析式是()A()=(1)2,0B()=(1)2,1 C()=(+1)2,0D()=(+1)2,1 答案:B 分析:利用凑配法求得()解析式.(2+1)=4=(2+1)2 2(2+1)+1,且2+1 1,所以()=2 2+1=(1)2,1.故选:B 4、已知定义在上的函数()在1,+)上单调递增,若(2)=0,且函数(1)为偶函数,则不等式()0的解集为()A(2,+)B(4,1)(0,+)C(4,+)D(4,0)(2,+)答案:D 分析:分析可知函数()的图象关于直线=1对称,可得出函数()的单调性,分析()的符号变化,由()0可得 0()0()0,解之即可.因为函数(1)为偶函数,则(1)=(1),故函数()的图象关于直线=1对称,因为函数()在1,+)上单调递增,故函数()在(,1上单调递减,因为(2)=0,则(4)=0,所以,由()0可得4 0可得 2,解不等式()0,可得 0()0()0,解得4 2,故不等式()0的解集为(4,0)(2,+).故选:D.5、函数=3413的图像大致是()AB CD 答案:A 分析:利用=2时 0排除选项 D,利用=2时 0排除选项 C,利用=12时 0,可知选项 D 错误;当=2时,=(2)3(2)413=8153 0,可知选项 C 错误;当=12时,=(12)3(12)413=12603 0,可知选项 B 错误,选项 A 正确.故选:A 6、已知幂函数的图象经过点(4,12),则该幂函数的大致图象是()AB CD 答案:A 分析:设出幂函数的解析式,利用函数图象经过点求出解析式,再由定义域及单调性排除 CDB 即可.设幂函数为=,因为该幂函数得图象经过点(4,12),所以4=12,即22=21,解得=12,即函数为=12,则函数的定义域为(0,+),所以排除 CD,因为=12 0恒成立,然后通过分类讨论 0和=0两种情况分别求得a的取值范围,可得答案.()=124+2的定义域为是使2 4+2 0在实数集上恒成立.若=0时,2 0恒成立,所以=0满足题意,若 0时,要使2 4+2 0恒成立,则有 0=162 8 0 解得0 00,=0+1 1,00,=0+1 1,0(2)设0 1 2 1,则(1)(2)1+11+1 212 1(1 2)+2112=(1 2)(1112)(12)12112,0 1 2 1,1 2 0,即(1)(2),函数()在(0,1)上是减函数 17、近年来,中美贸易摩擦不断,美国对我国华为百般刁难,并拉拢欧美一些国家抵制华为5,然而这并没有让华为却步.今年,我国华为某企业为了进一步增加市场竞争力,计划在 2020 年利用新技术生产某款新手机,通过市场分析,生产此款手机全年需投入固定成本 250 万元,每生产千部手机,需另投入成本()万元,且()=102+100,0 40701+10000 9450,40,由市场调研知,每部手机的售价为 0.7 万元,且全年内生产的手机当年能全部销售完.(1)求 2020 年的利润()(万元)关于年产量(千部)的函数关系式(利润=销售额-成本).(2)2020 年产量为多少时,企业所获利润最大?最大利润是多少.答案:(1)()=102+600 250,0 40(+10000)+9200,40;(2)2020 年产量为 100 千部时,企业所获得利润最大,最大利润为 9000 万元.分析:(1)根据 2020 年的利润等于年销售量减去固定成本和另投入成本,分段求出利润()关于的解析式;(2)根据(1)求出利润()的函数解析式,分别利用二次函数的性质和基本不等式求得每段的最大值,即可得到结论.(1)解:由题意可知,2020 年的利润定于年销售额减去固定成本和另投入成本,当0 40时,()=0.7 1000 (102+100)250=102+600 250 当 40时,()=0.7 1000 (701+10000 9450)250=(+10000)+9200,所以()=102+600 250,0 40(+10000)+9200,40.(2)当0 40时,()=102+600 250=10(30)2+8750,此时函数()开口向上的抛物线,且对称轴为=30,所以当=30时,()max=(30)=8750(万元);当 40时,()=(+10000)+9200,因为+10000 2 10000=200,当且仅当=10000即=100时,等号成立,即当=100时,()max=(100)=200+9200=9000(万元),综上可得,当=100时,()取得最大值为9000(万元),即 2020 年产量为 100 千部时,企业获利最大,最大利润为 9000 万元.18、已知()是定义在2,2上的奇函数,且当 2,0)时,()=2.(1)求函数()在2,2上的解析式;(2)若()2 2 9对所有 2,2,1,1恒成立,求实数的取值范围.答案:(1)()=2,2 00,=02,0 2 (2)1,1 分析:(1)利用奇函数的定义可得函数的解析式;(2)由二次函数的性质可得函数()的最小值,代入不等式,进而利用一次函数的性质列不等式组,可得实数的取值范围(1)因为函数()为定义域上的奇函数,所以(0)=0,当 (0,2时,2,0),所以()=()2()=2+,因为()是奇函数,所以()=()=2+,所以()=2,所以()=2,2 00,=02,0 2 (2)作出()在区间2,2上的图象,如图:可得函数()在2,2上为减函数,所以()的最小值为(2)=6,要使()2 2 9对所有 2,2,1,1恒成立,即6 2 2 9对所有 1,1恒成立,令()=2+2 3,1,1,则(1)=2+2 3 0(1)=2 2 3 0,即3 11 3,可得:1 1,所以实数的取值范围是1,1.19、某运输公司今年初用 49 万元购进一台大型运输车用于运输.若该公司预计从第 1 年到第年(N)花在该台运输车上的维护费用总计为(2+5)万元,该车每年运输收入为 25 万元.(1)该车运输几年开始盈利?(即总收入减去成本及所有费用之差为正值)(2)若该车运输若干年后,处理方案有两种:当年平均盈利达到最大值时,以 17 万元的价格卖出;当盈利总额达到最大值时,以 8 万元的价格卖出.哪一种方案较为合算?请说明理由.答案:(1)3 年(2)方案较为合算 分析:(1)由25 49 (2+5)0,能求出该车运输 3 年开始盈利.(2)方案中,2549(2+5)=20 (+49)6.从而求出方案最后的利润为 59(万);方案中,=25 49 (2+5)=2+20 49=(10)2+51,=10时,利润最大,从而求出方案的利润为59(万),比较时间长短,进而得到方案较为合算.(1)由题意可得25 49 (2+5)0,即2 20+49 0,解得10 51 10+51,3,该车运输 3 年开始盈利.;(2)该车运输若干年后,处理方案有两种:当年平均盈利达到最大值时,以 17 万元的价格卖出,2549(2+5)=20 (+49)6,当且仅当=7时,取等号,方案最后的利润为:25 7 49 (49+35)+17=59(万);当盈利总额达到最大值时,以 8 万元的价格卖出,=25 49 (2+5)=2+20 49=(10)2+51,=10时,利润最大,方案的利润为51+8=59(万),两个方案的利润都是 59 万,按照时间成本来看,第一个方案更好,因为用时更短,方案较为合算.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精选 试题 答案 高中数学 第三 函数 概念 性质 考点
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文