圆知识点归纳.pdf
《圆知识点归纳.pdf》由会员分享,可在线阅读,更多相关《圆知识点归纳.pdf(6页珍藏版)》请在咨信网上搜索。
1、 圆整章知识点复习 -1-圆圆章节知识点复习章节知识点复习名词解释:名词解释:1.弦连接圆上任意两点的线段叫做弦。2.弧圆上任意两点间的部分叫做圆弧,简称弧。3.半圆圆的任意一条直径的两个端点把圆分成两条弧,第一条弧都叫做半圆。4.等圆能够重合的两个圆叫做等圆。5.等弧在同圆或等圆中,能够互相重合的弧叫做等弧。6.圆心角顶点在圆心的角叫做圆心角。7.圆周角顶点在圆上,且两边都与圆相交的角叫做圆周角。8.圆内接多边形如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆。9.外心外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形外心外心。10.内
2、心三角形三条角平分线的交点,叫做三角形的内心内心。11.内切圆与三角形各边相切的圆叫做三角形的内切圆。12.割线直线和圆有两个公共点(直线和圆相交),这条直线叫做圆的割线割线。13.切线直线和圆只有一个公共点(直线和圆相切),这条直线叫做圆的切线切线,这个点叫做切点切点。14.切线长经边圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长切线长。15.圆心距两个圆圆心的距离叫做圆心距。16.中心正多边形的外接圆的圆心叫做这个正多边形的中心。17.中心角正多边形每一边所对的圆心角叫做正多边形的中心角。18.边心距中心到正多边形的一边的距离叫做正多边形的边心距。19.扇形由组成圆心角
3、的两条半径和圆心角所对的弧所围成的图形叫做扇形。20.母线连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线。一、圆的概念一、圆的概念集合形式的概念:集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);(补充)3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等
4、的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;圆整章知识点复习 -2-drd=rrd周 2rRd周 1rRdrddCBAOOEDCBA5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。二、点与圆的位置关系二、点与圆的位置关系1 1、点在圆内、点在圆内 点点在圆内;在圆内;drC2 2、点在圆上、点在圆上 点点在圆上;在圆上;drB3 3、点在圆外、点在圆外 点点在圆外;在圆外;drA三、直线与圆的位置关系三、直线与圆的位置关系1 1、直线与圆相离、直线与圆相离 无交点;无交点;dr2 2、直线与圆相切、直线与圆相切 有一个交点;有一个
5、交点;dr3 3、直线与圆相交、直线与圆相交 有两个交点;有两个交点;dr四、圆与圆的位置关系四、圆与圆的位置关系外离(图外离(图 1 1)无交点无交点 ;dRr外切(图外切(图 2 2)有一个交点有一个交点 ;dRr相交(图相交(图 3 3)有两个交点有两个交点 ;RrdRr内切(图内切(图 4 4)有一个交点有一个交点 ;dRr内含(图内含(图 5 5)无交点无交点 ;dRr 五、垂径定理五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。推论推论 1 1:(1 1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;)平分弦(
6、不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2 2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3 3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共以上共 4 4 个定理,简称个定理,简称 2 2 推推 3 3 定理:此定理中共定理:此定理中共 5 5 个结论中,只要知道其中个结论中,只要知道其中 2 2 个即个即可推出其它可推出其它 3 3 个结论,即:个结论,即:是直径是直径 弧弧弧弧 弧弧弧弧ABABCDCEDEBCBDACAD周 4rR
7、d周 5rRd周 3rRd 圆整章知识点复习 -3-CBAODCBAO中任意中任意 2 2 个条件推出其他个条件推出其他 3 3 个结论。个结论。推论推论 2 2:圆的两条平行弦所夹的弧相等。:圆的两条平行弦所夹的弧相等。即:在即:在中,中,OABCD 弧弧弧弧ACBD六、圆心角定理六、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。心距相等。此定理也称此定理也称 1 1 推推 3 3 定理,即上述四个结论中,定理,即上述四个结论中,只要知道其中的只要知道其中的 1 1 个相等,则可以推
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 知识点 归纳
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。