多波束勘测系统工作原理及结构.doc
《多波束勘测系统工作原理及结构.doc》由会员分享,可在线阅读,更多相关《多波束勘测系统工作原理及结构.doc(16页珍藏版)》请在咨信网上搜索。
1、第二章 多波束勘测系统工作原理及结构多波束系统是70年代兴起、80年代中、末期又得到飞速发展的一项全新的海底地形精密勘测技术。它是当前兴趣的焦点,因为它既有条带测深数据,又同时可获取反映底质属性的回波强度数据(Laurent Hellequin et al.,2003)。该技术采取广角度定向发射和多通道信息接收,获得水下高密度具有上百个波束的条幅式海底地形数据,彻底改变了传统测深技术概念,使测深原理、勘测方法、外围设备和数据处理技术诸方面都发生了巨大变化,大大提高了海底地形勘测的精度、分辨率和工作效率,实现了测深技术史上的一次革命性突破(李家彪等,2000)。多波束系统的工作原理与传统的单波束
2、回声测深仪工作原理类似,都是根据声波在水下往返传播的时间与声速的乘积得到距离,从而得到水深。不同的是单波束测深仪一般采用较宽的发射波束(8左右)向船底垂直发射,声传播路径不会发生弯曲,来回的路径最短,能量衰减很小,通过对回声信号的幅度检测确定信号往返传播的时间,再根据声波在水介质中的平均传播速度计算测量水深。在多波束系统中,换能器配置有一个或者多个换能器单元的阵列,通过控制不同单元的相位,形成多个具有不同指向角的波束,通常只发射一个波束而在接收时形成多个波束。除换能器天底波束外,外缘波束随着入射角的增加,波束在倾斜穿过水层时会发生折射,同时由于多波束沿航迹方向采用较窄的波束角而在垂直航迹方向采
3、用较宽的覆盖角,要获得整个测幅上精确的水深和位置,必须要精确地知道测量区域水柱的声速剖面和波束在发射和接收时船的姿态和船艏向。因此,多波束测深在系统组成和测量时比单波束测深仪要复杂得多(周兴华等,1999)。2.1 多波束勘测系统的工作原理2.1.1 单波束的形成2.1.1.1 发射阵和波束的形成一个单波束在水中发射后,是球形等幅度传播,所以方向上的声能相等。这种均匀传播称为各向同性传播(isotropic expansion),发射阵也叫各向同性源(isotropic source)。例如,一个小石头扔进池塘时就是这种情况,如图2.7所示。图2.7 波的各向同性传播显然,测深时是不能采用如此
4、的声波的。采用发射基阵就可以产生各向异性的声波。下面简要叙述它形成的原理。如果两个相邻的发射器发射相同的各向同性的声信号,声波图将互相重叠和干涉,如图2.8所示。两个波峰或者两个波谷之间的叠加会增强波的能量,波峰与波谷的叠加正好互相抵消,能量为零。一般地,相长干涉发生在距离每个发射器相等的点或者整波长处,而相消干涉发生在相距发射器半波长或者整波长加半波长处。显然,水听器需要放置在相长干涉处。图2.8 相长干涉和相消干涉(Constructive and Destructive Interference)一个典型的声纳,基阵的间距d(图2.8中1、2点的距离)是/2(半波长)。在这种情况下,相长
5、和相消干涉发生时的点位处于最有利的角度(点位与基阵中心的连线与水平线的夹角),相长干涉:= 0, 180,相消干涉:= 90, 270,如图2.9所示。图2.9 两个发射器相距/2时的相长和相消干涉图2.10是两个发射器间距/2时的波束能量图(Beam Pattern),左边为平面图,右边为三维图,从图上可以清楚地看到能量的分布,不同的角度有不同的能量,这就是能量的指向性(directivity)。如果一个发射阵的能量分布在狭窄的角度中,就称该系统指向性高。真正的发射阵由多个发射器组成,有直线阵和圆形阵等。这里只讨论离散直线阵,其它阵列类似可以推导出。如图2.11所示,根据两个发射器的基阵可以
6、推导出多个发射器组成的直线阵的波束图。图2.10 两个发射器间距/2时的波束能量图(Beam Pattern)图2.11 多基元线性基阵的波束图(Beam Pattern)图2.11中,能量最大的波束叫主瓣,侧边的一些小瓣是旁瓣,也是相长干涉的地方,引起了能量的泄漏。旁瓣还可能引起回波,对主瓣的回波产生干扰。旁瓣是不可避免的,可以通过加权的方法降低旁瓣的水平,但是加权后旁瓣水平值降低了,波束却展宽了。主瓣的中心轴叫最大响应轴(maximum response axisMRA),主瓣半功率处(相对于主瓣能量的-3db)角度的两倍就是波束角。发射器越多,基阵越长,则波束角越小,指向性就越高。设基阵
7、的长度为D,则波束角= 50.6/D(2.36)可以看出,减小波长或者增大基阵的长度都可以提高波束的指向性。但是,基阵的长度不可能无限增大,而波长越小,在水中衰减得越快,所以指向性不可能无限提高。2.1.1.2 波束的指向(Beam Steering)换能器怎样在指定的方向上发射或者接收声波,称为波束的指向。以水听器接收回波为例。如图2.12,当回波以方向到达接收基阵时,首先在点3到达,其次为点2和点1,则在图2.12 夹角为的回波点2的回波比点3多旅行了距离Ad sin q,点1比点3的回波多旅行了距离B2d sin q,相应的增加的时间为T2=A/c =(d sin)/c (2.37)T1
8、=B/c =(2d sin)/c (2.38)计算出偏移时间后,在基阵中作相应的调整,引入延时,使回波在基阵上正好构成相长干涉,这样就可以使主瓣在指定的方向上,如图2.13所示。 图2.13 引入延时后主瓣方向的偏移 图2.14 多波束的几何构成2.1.2 多波束的形成当接收波束发射出扇形波束后,接收波束按一定的间距(等距离或者等角度)与之相交,就形成了一个个在纵横向的窄波束脚印,如图2.14所示。设水听器共有N个基元,每个基元i记录的回波Si(t)的振幅为A(t),且S(t) = A(t)cos(2pft) (2.39)写成相位的形式为S(t) = A(t)cos(f(t) (2.40)或
9、(2.41)其中,f(t) = 2pft。多波束系统需测量回波S(t)和相位(t),然后将模拟接收信号转换为数字信号,采用率一般在13ms之间。所有基元在采样点上的回波和相位值称为时间片(time slice)。在上节中,讨论了基元i相对于第一个基元的距离差,转换为相位差为 (2.42)由(2.41)和(2.42)得 (2.43)其中为第i个基元在角方向接收时的回波,则基阵接收的回波为 (2.44)其中为加权系数。如果要求在一个时间片(time slice)里,由N个基元形成M个指定方向的波束,用矩阵表示为 (2.45)其中,为接收角的波束时的第i个基元的相位差,为。为了在如此短的时间(ms级
10、)完成计算,必须采用一些快速算法。这里,引入快速傅立叶变换(FFT)。式(2.44)类似于傅立叶变换,设 (2.46)得 (2.47)由于k必须为整数,所以的取值受到一定的限制,如d、N在一定值时,同k的关系表2.1所示。表2.1 k和的对应值K012345()02.44.87.29.612.02.1.3 多波束脚印的归位波束脚印的归位是多波束数据处理的关键问题之一。多波束测量的最终成果是得到地理坐标系(或地方系)下的海底地形或者地物,由于多波束采用广角度定向发射、多阵列信号接收和多个波束形成处理等技术,为了更好的确定波束的空间关系和波束脚印的空间位置,必须首先定义多波束船体参考坐标系VFS,
11、并根据船体坐标系同地理坐标系LLS之间的关系,将波束脚印的船体坐标转化到地理坐标系(或当地坐标系)和某一高程基准面下的平面坐标和高程。该过程即为波束脚印的归位。船体坐标系原点位于换能器中心,x轴指向航向,z轴垂直向下,y轴指向侧向,与x、z轴构成右手正交坐标系。地理坐标系原点为换能器中心,x轴指向地北子午线,y同x垂直指向东,z与x、y轴构成正交坐标系。归位需要的参数包括船位、船姿、声速断面、波束到达角和往返程时间。归位过程包括如下四个步骤:(1) 姿态改正。(2) 船体坐标系下波束脚印位置的计算。(3) 波束脚印地理坐标的计算。(4) 海底点高程的计算。为方便波束脚印在船体坐标系下坐标的计算
12、(声线跟踪),现作如下假设:(1) 换能器处于一个平均深度,静、动吃水认为仅对深度有影响,而对平面坐标没有影响。(2) 认为波束的往、返程路径重合。(3) 对于高频发射系统,换能器的航向变化影响可以忽略。波束脚印船体坐标的计算需要用到三个参量,即垂直参考面下的波束到达角、传播时间和声速剖面。由于海水的作用,声束在海水中不是沿直线传播,而是在不同介质层的界面处发生折射,因此声束在海水中的传播路径为一折线。为了得到波束脚印的真实位置,就必须沿着波束的实际传播路径跟踪波束,该过程即为声线跟踪,通过声线跟踪得到波束脚印船体坐标的计算过程被称为声线弯曲改正。为了计算方便,对声速断面作如下假设:(1) 声
13、速断面是精确的,无代表性误差。(2) 声速在波束形成的垂面内变化,不存在侧向变化。(3) 声速在海水中的传播特性遵循Snell法则。(4) 换能器的动吃水引起的声速剖面的变化对深度的计算可以忽略不计。根据上述讨论和假设,波束脚印的计算模型可表达为:Snell法则可描述为: (2.48)将波束的实际传播路径进行微分,则波束脚印在船体坐标系下的点位(x,y,z)可表达为: (2.49)zz: 深度 R:距离 q:波束角c: 声速 t:脉冲长度ln: 中心波束脚印长度ls: 边缘波束脚印长度 q0RRlnlgct/2图2.15 单个波束脚印坐标的计算x换能器(x0,z0)其一级近似式为: (2.50
14、)更精确的公式见2.1.3。波束脚印的船体坐标系确定后,下一步就可以转化为地理坐标。转换关系为: (2.51)式中,下脚g、gG别代表波束脚印的地理坐标、利用GPS确定的船体地理坐标,R(h,r,p)为船体坐标系与地理坐标系的旋转关系,航向、横摇和纵摇是三个欧拉角。式(2.49)确定的深度z仅为换能器面到达海底的垂直距离,测点的实际深度还应该考虑换能器的静吃水hss、动吃水hds、船体姿态对深度的影响ha,若潮位的变化htide是相对于某一深度基准面或者高程基准面确定的,则波束脚印的高程为: (2.52)换能器的静吃水在测量前或换能器安装后被量定,作为一个常量输入到多波束的数据处理单元中;动吃
15、水是由于船体的运动而产生的,它可通过姿态传感器中的Heaven参数确定。船体姿态对波束脚印的地理坐标也有一定的影响,可通过姿态传感器的横摇r和纵摇p参数确定。上述参数的测定及其对波束脚印平面位置和深度的补偿属于纯几何问题,武汉大学的赵建虎博士对此有详细的研究,本文不再赘述。2.2 多波束勘测系统的组成结构2.2.1 多波束的组成多波束系统主要由三个部分组成。第一部分是多波束的主系统,主要包括换能器阵列,收发器和数据处理、显示和记录单元等;第二部分是辅助系统,包括定位系统、船姿(横摇、纵摇、起伏和船艏向)测量传感器和测量水柱声速剖面的声速仪;第三部分是数据存贮和后处理系统,包括数据处理计算机、数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 波束 勘测 系统 工作 原理 结构
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。