4-定积分概念及牛顿莱布尼茨公式.ppt
《4-定积分概念及牛顿莱布尼茨公式.ppt》由会员分享,可在线阅读,更多相关《4-定积分概念及牛顿莱布尼茨公式.ppt(54页珍藏版)》请在咨信网上搜索。
1、复 习若若 则则积分法:积分法:用用基本积分公式基本积分公式及及积分性质积分性质求积分的方法求积分的方法第一换元积分法:第一换元积分法:第二换元积分法:第二换元积分法:(根式换元、三角换元)根式换元、三角换元)分部积分公式分部积分公式换换元元积积分分法法分分部部积积分分法法直接积分法直接积分法:不定积分:不定积分:2021/5/1814.2 4.2 定积分概念定积分概念【学习本节要达到的目标】1、了解定积分概念;2、掌握定积分的几何意义.2021/5/182一、问题的提出背景来源面积的计算矩形的面积定义为两直角边长度的乘积我们可以用大大小小的矩形将图形不断填充,但闪烁部分永远不可能恰好为矩形,
2、这些“边角余料”无外乎是右图所示的“典型图形”(必要时可旋转)“典型图形”面积的计算问题就产生了定积分定积分一般图形的面积是什么?2021/5/183实例1 (求曲边梯形的面积)设曲边梯形是由连续曲线以及两直线所围成,求其面积 A.矩形面积梯形面积2021/5/184abxyoabxyo用矩形面积近似取代曲边梯形面积显然,小矩形越多,矩形总面积越接近曲边梯形面积(四个小矩形)(九个小矩形)2021/5/185观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系2021/5/186观察下列演示过程,注意当分割加细时,
3、观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系2021/5/187观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系2021/5/188观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系2021/5/189观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系2021/5/1810观察下列演示过程,注意当分
4、割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系2021/5/1811观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系2021/5/1812观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系2021/5/1813观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系2021/5/1814观察下列演
5、示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系2021/5/1815观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系2021/5/1816解决步骤解决步骤:1)分割分割.在区间 a,b 中任意插入 n 1 个分点用直线将曲边梯形分成 n 个小曲边梯形;2)近似近似.在第i 个窄曲边梯形上任取作以为底,为高的小矩形,并以此小梯形面积近似代替相应窄曲边梯形面积得2021/5/18173)求和求和.把n个小矩形的面积加起来。4)取极限取极限.
6、当分割无限加细时,则曲边梯形面积2021/5/1818实例2 (求变速直线运动的路程)设某物体作直线运动,且求在运动时间内物体所经过的路程 s.解决步骤解决步骤:1)分割分割.将它分成在每个小段上物体经2)近似近似.得已知速度n 个小段过的路程为部分路程值部分路程值某时刻的速度某时刻的速度2021/5/18193)求和求和.4)取极限取极限.上述两个问题的共性共性:解决问题的方法步骤相同:“分割,近似,求和,取极限”所求量极限结构式相同:特殊乘积和式的极限2021/5/1820二、定积分概念任一种分法任取总趋于确定的极限 I,则称此极限 I 为函数在区间上的定积分定积分,即此时称 f(x)在
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 积分 概念 牛顿 莱布尼茨 公式
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。