八年级数学下册期末试卷测试卷附答案.doc
《八年级数学下册期末试卷测试卷附答案.doc》由会员分享,可在线阅读,更多相关《八年级数学下册期末试卷测试卷附答案.doc(28页珍藏版)》请在咨信网上搜索。
八年级数学下册期末试卷测试卷附答案 一、选择题 1.若二次根式有意义,则的取值范围是( ) A. B. C. D. 2.已知下列三角形的各边长:①3、4、5,②3、4、6,③5、12、13,④5、11、12其中直角三角形有( ) A.4个 B.3个 C.2个 D.1个 3.如图,在四边形中,,要使四边形成为平行四边形,则应增加的条件是( ) A. B. C. D. 4.将80辆环保电动汽车一次充电后行驶里程记录数据,获得如图所示条形统计图,根据统计图所测数据的中位数、众数分别是( ) A.165,160 B.165,165 C.170,165 D.160,165 5.如图的网格中,每个小正方形的边长为1,A,B,C三点均在格点上,结论错误的是( ) A.AB=2 B.∠BAC=90° C. D.点A到直线BC的距离是2 6.如图,菱形的对角线相交于点,于点,连接,若,则的度数是( ) A.25° B.22.5° C.30° D.15° 7.如图,在中,,,,点为边上任意一点过点分别作于点,于点,则线段的最小值是( ) A.2 B.2.4 C.3 D.4 8.如图,已知A(3,1)与B(1,0),PQ是直线上的一条动线段且(Q在P的下方),当AP+PQ+QB最小时,Q点坐标为( ) A.(,) B.(,) C.(0,0) D.(1,1) 二、填空题 9.若式子有意义,则实数a的取值范围是_____________. 10.如图,菱形的对角线,相交于点,已知,菱形的面积为24,则的长为______. 11.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b.若ab=4,大正方形的面积为16,则小正方形的边长为______. 12.如图,将矩形沿对角线折叠,使点在点处,与交于点.若,,则的长为______. 13.已知A(﹣2,2),B(2,3),若要在x轴上找一点P,使AP+BP最短,此时点P的坐标为_____ 14.如图,在四边形中,,,,,分别是,,,的中点,要使四边形是菱形,四边形还应满足的一个条件是______. 15.如图①,在平面直角坐标系中,等腰在第一象限,且轴.直线从原点O出发沿x轴正方向平移.在平移过程中,直线被截得的线段长度n与直线在x轴上平移的距离m的函数图象如图②所示,那么的面积为__________. 16.若函数y=mx2+2(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为_____. 三、解答题 17.解下列各题 计算:(1); (2); (3); (4). 18.如图,一架梯子AB斜靠在一竖直的墙OA上,这时AO=3m,∠OAB=30°,梯子顶端A沿墙下滑至点C,使∠OCD=60°,同时,梯子底端B也外移至点D.求BD的长度.(结果保留根号)[补充:直角三角形中,30°所对的直角边是斜边的一半] 19.如图,每个小正方形的边长都为1,AB的位置如图所示. (1)在图中确定点C,请你连接CA,CB,使CB⊥BA,AC=5; (2)在完成(1)后,在图中确定点D,请你连接DA,DC,DB,使CD=,AD=,直接写出BD的长. 20.如图,在矩形中,垂直平分对角线,交于,交于,交于,连接,. (1)求证:四边形是菱形; (2)若为的中点,,求的度数. 21.阅读下列材料,然后回答问题: 在进行类似于二次根式的运算时,通常有如下两种方法将其进一步化简: 方法一: 方法二: (1)请用两种不同的方法化简: ; (2)化简: . 22.杆称是我国传统的计重工具,如图1,可以用秤砣到秤纽的水平距离x(厘米),来得出秤钩上所挂物体的重量y(斤).如表中为若干次称重时所记录的一些数据. x(厘米) 1 2 4 7 11 y(斤) 0.75 1.00 1.50 2.25 3.25 (1)请在图2平面直角坐标系中描出表中五组数据对应的点; (2)秤钩上所挂物体的重量y是否为秤纽的水平距离的函数?如果是,请求出符合表中数据的函数解析式; (3)当秤钩所挂物重是4.5斤时,秤杆上秤砣到秤纽的水平距离为多少厘米? 23.将两张宽度相等的纸片叠放在一起,得到如图的四边形. (1)求证:四边形是菱形; (2)如图,联结,过点A、D分别作的垂线、,垂足分别为点F、E. ①设M为中点,联结、,求证:; ②如果,P是线段上一点(不与点A、C重合),当为等腰三角形时,求的值. 24.如图,平面直角坐标系中,O为原点,直线y=x+1分别交x轴、y轴于点A、B,直线y=﹣x+5分别交x轴、y轴于点C、D,直线AB、CD相交于点E. (1)请直接写出A、D的坐标; (2)P为直线CD上方直线AE上一点,横坐标为m,线段PE长度为d,请求出d与m的关系式; (3)在(2)的条件下,连接PC、PD,若∠CPD=135°,求点P的坐标. 25.如图1,四边形是正方形,点在边上任意一点(点不与点,点重合),点在的延长线上,. (1)求证:; (2)如图2,作点关于的对称点,连接、、,与交于点,与交于点.与交于点. ①若,求的度数; ②用等式表示线段,,之间的数量关系,并说明理由. 【参考答案】 一、选择题 1.B 解析:B 【分析】 根据二次根式有意义的条件列式求解即可. 【详解】 解:∵二次根式有意义 ∴x﹣3≥0,即:x≥3. 故选:B. 【点睛】 本题主要考查了二次根式有意义的条件,二次根式有意义的条件是被开方数大于等于零. 2.C 解析:C 【分析】 判断是否可以构成直角三角形,只需验证两小边的平方和是否等于最长边的平方,即可得出答案. 【详解】 解:①,能构成直角三角形; ②,不能构成直角三角形; ③,能构成直角三角形; ④,不能构成直角三角形; ∴其中直角三角形有2个; 故选:C. 【点睛】 本题主要考查了勾股定理的逆定理:如果三角形的三边长,,满足,那么这个三角形就是直角三角形. 3.B 解析:B 【解析】 【分析】 根据平行四边形的判定方法,以及等腰梯形的性质等知识,对各选项进行判断即可. 【详解】 A.错误,当四边形是等腰梯形时,也满足条件. B.正确,∵, ∴, ∵, ∴四边形是平行四边形. C.错误,当四边形是等腰梯形时,也满足条件. D.错误,∵, ∴,与题目条件重复,无法判断四边形是不是平行四边形. 故选:B. 【点睛】 本题考查了平行四边形的判定和性质,平行线的判定,等腰梯形的性质等知识,解题的关键是熟练掌握平行四边形的判定方法. 4.B 解析:B 【解析】 【分析】 由中位数和众数的定义结合条形统计图即可得出答案. 【详解】 根据题意有80辆电动汽车为偶数个,根据统计图可知最中间的两个数都为165,故中位数=, 165出现了20次,为最多,即众数为165. 故选:B. 【点睛】 本题考查中位数和众数的定义,从条形统计图中获取必要的信息是解答本题的关键. 5.C 解析:C 【分析】 根据勾股定理以及其逆定理和三角形的面积公式逐项分析即可得到问题答案. 【详解】 解:AB=,故选项A正确,不符合题意; ∵AC=,BC, ∴, ∴△ACB是直角三角形, ∴∠CAB=90°,故选项B正确,不符合题意; S△ABC,故选项C错误,符合题意; 点A到直线BC的距离,故选项D正确,不符合题意; 故选:C. 【点睛】 本题考查了勾股定理以及逆定理的运用,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么 .熟记勾股定理的内容是解题得关键. 6.B 解析:B 【解析】 【分析】 求出∠HDO,再证明∠DHO=∠HDO即可解决问题; 【详解】 ∵, ∴. ∵四边形是菱形, ∴°, ∵, ∴, ∴. ∵,∴, ∴. 故选B. 【点睛】 此题考查菱形的性质,解题关键在于掌握菱形具有平行四边形的一切性质; 菱形的四条边都相等; 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.判断OH为直角三角形斜边上的中线. 7.B 解析:B 【解析】 【分析】 求出四边形PECF是矩形,根据矩形的性质得出EF=CP,根据垂线段最短得出CP⊥AB时,CP最短,根据三角形的面积公式求出此时CP值即可. 【详解】 解:连接CP, ∵PE⊥AC,PF⊥BC,∠ACB=90°, ∴∠PEC=∠ACB=∠PFC=90°, ∴四边形PECF是矩形, ∴EF=CP, 当CP⊥AB时,CP最小,即EF最小, 在Rt△ABC中,∠C=90°,AC=3,BC=4,由勾股定理得:AB=5, 由三角形面积公式得:AC×BC=AB×CP, CP=, 即EF的最小值是=2.4, 故选:B. 【点睛】 本题考查了勾股定理,三角形的面积,矩形的性质和判定,垂线段最短等知识点,能求出EF最短时P点的位置是解此题的关键. 8.A 解析:A 【分析】 作点B关于直线y=x的对称点(0,1),过点A作直线MN,使得MN平行于直线y=x,并沿MN向下平移单位后,得(2,0),连接交直线y=x于点Q,求出直线解析式,与y=x组成方程组,即可求出Q点的坐标. 【详解】 解:作点B关于直线y=x的对称点(0,1),过点A作直线MN,使得MN平行于直线y=x,并沿MN向下平移单位后,得(2,0),连接交直线y=x于点Q,如下图所示. ∵,,∴四边形是平行四边形, ∴, ∵且, ∴当值最小时,值最小. 根据两点之间线段最短,即三点共线时,值最小. ∵(0,1),(2,0),∴直线的解析式, ∴,即, ∴Q点的坐标为(,). 故答案选A. 【点睛】 本题主要考查了一次函数图像上点的坐标特征、最短路径问题. 二、填空题 9.a≥-2且a≠1 【解析】 【分析】 直接利用二次根式的性质得出a的取值范围. 【详解】 解:∵式子有意义, ∴,, ∴,且; 故答案为:且; 【点睛】 此题主要考查了二次根式的性质,正确掌握二次根式的性质是解题关键. 10.A 解析:6 【解析】 【分析】 根据菱形的性质得到AC=8,根据菱形的面积等于两条对角线乘积的一半,即可求解. 【详解】 解:∵四边形ABCD为菱形; ∴AC=2OA=8,, ∴, ∴BD=6, 故答案为:6 【点睛】 本题考查了菱形的性质,解题的关键是熟记菱形面积的两种表示法:(1)底乘高,(2)对角线乘积的一半,本题运用的是第二种. 11. 【解析】 【分析】 由题意可知:中间小正方形的边长为a-b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长. 【详解】 解:由题意可知:中间小正方形的边长为a-b, ∵每一个直角三角形的面积为:ab=×4=2, ∴4ab+ =16, ∴=16-8=8, ∴a-b=2, 故答案为:2. 【点睛】 本题考查勾股定理的应用,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型. 12.E 解析: 【分析】 由矩形和折叠的性质得到∠E=∠D=90°,AE=AB=CD,CE=BC,证明△AEF≌△CDF,李永明勾股定理求出AE,再利用勾股定理即可求出AC. 【详解】 解:∵四边形ABCD是矩形, ∴∠E=∠D=90°, 由折叠可知:AE=AB=CD,CE=BC, 又∵∠AFE=∠CFD, ∴△AEF≌△CDF(AAS), ∴EF=DF=4,AF=CF=5, ∴AE==3, ∴AB=CD=3, ∵BC=AD=AF+DF=5+4=9, ∴AC==, 故答案为:. 【点睛】 本题考查的是翻转变换的性质,矩形的性质,勾股定理,解题的关键是根据折叠得到相等的边和角,从而证明三角形全等. 13.A 解析:(-0.4,0) 【分析】 点A(-2,2)关于x轴对称的点A'(-2,-2),求得直线A'B的解析式,令y=0可求点P的横坐标. 【详解】 解:点A(-2,2)关于x轴对称的点A'(-2,-2), 设直线A'B的解析式为y=kx+b, 把A'(-2,-2),B(2,3)代入,可得 ,解得 , ∴直线A'B的解析式为y=x+, 令y=0,则0=x+, 解得x=-0.4, ∴点P的坐标为(-0.4,0), 故答案为(-0.4,0). 【点睛】 本题综合考查待定系数法求一次函数解析式,一次函数图象上点的坐标特征,两点之间线段最短等知识点.凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点. 14. 【分析】 根据三角形的中位线平行于第三边并且等于第三边的一半可得且,同理可得且,且,然后证明四边形是平行四边形,再根据邻边相等的平行四边形是菱形解答. 【详解】 解:还应满足. 理由如下:,分别是,的中点, 且, 同理可得:且,且, 且, 四边形是平行四边形, , , 即, 是菱形. 故答案是:. 【点睛】 本题考查了中点四边形,其中涉及到了菱形的判定,平行四边形的判定,三角形的中位线定理,根据三角形的中位线平行于第三边并且等于第三边的一半得到四边形的对边平行且相等从而判定出平行四边形是解题的关键,也是本题的突破口. 15.2 【分析】 过点作于,设经过点时,与的交点为,根据函数图像,找到经过点和经过点的函数值分别求得,由与轴的夹角为45°,根据勾股定理求得,根据等腰三角的性质求得,进而求得三角形的面积. 【详解】 如 解析:2 【分析】 过点作于,设经过点时,与的交点为,根据函数图像,找到经过点和经过点的函数值分别求得,由与轴的夹角为45°,根据勾股定理求得,根据等腰三角的性质求得,进而求得三角形的面积. 【详解】 如图①,过点作于 由图②可知,当直线平移经过点时,; 随着平移,的值增大; 如图,当经过点时,与的交点为,如图 此时,则, ,与轴的夹角为45°, 为等腰直角三角形, 即 是等腰三角形 , 故答案为:2. 【点睛】 本题考查了一次函数图像的平移,等腰三角形的性质,勾股定理,从函数图像上获取信息,及掌握与轴的夹角为45°是解题的关键. 16.﹣或0. 【分析】 当m=0时,函数y=4x+1的图象与x轴有一个交点,当m≠0时,抛物线y=mx2+2(m+2)x+m+1的图象与x轴只有一个交点,即方程mx2+2(m+2)x+m+1=0只有一个 解析:﹣或0. 【分析】 当m=0时,函数y=4x+1的图象与x轴有一个交点,当m≠0时,抛物线y=mx2+2(m+2)x+m+1的图象与x轴只有一个交点,即方程mx2+2(m+2)x+m+1=0只有一个根,根据根的判别式为0求出m的值. 【详解】 分两种情况讨论: ①当m=0时,函数y=4x+1的图象与x轴有一个交点; ②当m≠0时,函数y=mx2+2(m+2)x+m+1的图象是抛物线,若抛物线的图象与x轴只有一个交点,则方程mx2+2(m+2)x+m+1=0只有一个根,即4﹣4m(m+1)=0,解得:m. 综上所述:m的值为或0. 故答案为或0. 【点睛】 本题考查了抛物线与x轴交点的知识,解答本题的关键是对函数二次项系数m进行分类讨论,此题难度不大,但是很容易出现错误. 三、解答题 17.(1);(2);(3);(4). 【分析】 (1)先把各二次根式化为最简二次根式,然后合并即可得到答案; (2)原式从左向右依次计算即可得到答案; (3)原式根据零指数幂、负整数指数幂、二次根式的乘 解析:(1);(2);(3);(4). 【分析】 (1)先把各二次根式化为最简二次根式,然后合并即可得到答案; (2)原式从左向右依次计算即可得到答案; (3)原式根据零指数幂、负整数指数幂、二次根式的乘法以及绝对值的意义代简各项后,再外挂; (4)原式利用平方差分工和完全平方公式进行计算即可得到答案. 【详解】 解:(1) = =; (2) = = = =; (3) = =; (4) = = =. 【点睛】 本题考查了二次根式的混合运算,熟练掌握运算法则,运算顺序以及灵活运用乘法公式是解答本题的关键. 18.3﹣(m) 【分析】 先在Rt△OAB中,OA=3m,∠OAB=30°,求出梯子AB的长,在滑动过程中梯子的长是不变的,再根据已知条件证明出△AOB≌△DOC,即可求出BD长. 【详解】 解:在Rt 解析:3﹣(m) 【分析】 先在Rt△OAB中,OA=3m,∠OAB=30°,求出梯子AB的长,在滑动过程中梯子的长是不变的,再根据已知条件证明出△AOB≌△DOC,即可求出BD长. 【详解】 解:在Rt△ABO中,∵AO=3m,∠OAB=30°, ∴AB, ∵∠OCD=60°, ∴∠ODC=30°, 在△AOB和△DOC中, , ∴△AOB≌△DOC(AAS), ∴OA=OD,OC=OB, ∴BD=OD﹣OB=3﹣(m). 【点睛】 本题考查了勾股定理解直角三角形,三角形全等的性质与判定,求出的长是解题的关键. 19.(1)见解析;(2). 【解析】 【分析】 (1)利用网格即可确定C点位置; (2)由勾股定理在Rt△DBG中,可求BD的长. 【详解】 解:(1)如图, ∴ ∴BC⊥AB, 在Rt△ACH中,A 解析:(1)见解析;(2). 【解析】 【分析】 (1)利用网格即可确定C点位置; (2)由勾股定理在Rt△DBG中,可求BD的长. 【详解】 解:(1)如图, ∴ ∴BC⊥AB, 在Rt△ACH中,AC=5; (2)∵CD=,AD=,可确定D点位置如图, ∴在Rt△DBG中,BD=. 【点睛】 本题考查勾股定理的应用,利用三角形内角和确定C点位置,由勾股定理确定D点的位置是解题的关键. 20.(1)见解析;(2)60° 【分析】 (1)根据垂直平分线的性质,可以得到,,,由矩形的性质,得到, 根据平行线的性质,利用证明从而得到,结合上步所求,由四边相等的四边形是菱形即可得出结论 (2)由 解析:(1)见解析;(2)60° 【分析】 (1)根据垂直平分线的性质,可以得到,,,由矩形的性质,得到, 根据平行线的性质,利用证明从而得到,结合上步所求,由四边相等的四边形是菱形即可得出结论 (2)由题意,可以得到垂直平分 从而得出 结合题意可得 的度数,进而求得的度数 【详解】 (1)证明:垂直平分, ,,, 四边形是矩形, , ,, , , , 四边形是菱形. (2)为中点,, 垂直平分, , , 为等边三角形, , , . 【点睛】 本题主要考查了矩形的性质,平行线的性质,全等三角形的判定,菱形的判定,等边三角形的判定和性质,熟练掌握这些性质及判定定理是解题关键. 21.(1);(2) 【解析】 【分析】 (1)首先理解题意,根据题目的解析,即可利用两种不同的方法化简求得答案; (2)结合题意,可将原式化为,继而求得答案. 【详解】 解:(1)方法一: 方法二:; 解析:(1);(2) 【解析】 【分析】 (1)首先理解题意,根据题目的解析,即可利用两种不同的方法化简求得答案; (2)结合题意,可将原式化为,继而求得答案. 【详解】 解:(1)方法一: 方法二:; (2)原式= 【点睛】 本题考查了分母有理化的知识.此题难度较大,解题的关键是理解题意,掌握分母有理化的两种方法. 22.(1)见解析;(2)秤钩上所挂物体的重量y是秤纽的水平距离的函数,解析式为y=x+;(3)当秤钩所挂物重是4.5斤时,秤杆上秤砣到秤纽的水平距离为16厘米. 【分析】 (1)利用描点法画出图形即可判 解析:(1)见解析;(2)秤钩上所挂物体的重量y是秤纽的水平距离的函数,解析式为y=x+;(3)当秤钩所挂物重是4.5斤时,秤杆上秤砣到秤纽的水平距离为16厘米. 【分析】 (1)利用描点法画出图形即可判断. (2)设函数关系式为y=kx+b,利用待定系数法解决问题即可; (3)把y=4.5代入(2)中解析式,求出x即可. 【详解】 解:(1)如图所示: (2)由(1)图形可知,秤钩上所挂物体的重量y是秤纽的水平距离的函数, 设y=kx+b,把x=1,y=0.75,x=2,y=1代入可得: , 解得:, ∴y=x+; (3)当y=4.5时,即4.5=x+, 解得:x=16, ∴当秤钩所挂物重是4.5斤时,秤杆上秤砣到秤纽的水平距离为16厘米. 【点睛】 本题考查一次函数的应用,待定系数法等知识,解题的关键是在直角坐标系内描出表中数据对应的点,通过图形求函数解析. 23.(1)见解析;(2)①见解析;②或 【分析】 (1)首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形. (2)①过点作于,连接,由,可得,再证明 解析:(1)见解析;(2)①见解析;②或 【分析】 (1)首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形. (2)①过点作于,连接,由,可得,再证明,利用三角形内角和定理即可得出答案; ②设,则,设,则,根据勾股定理可得,即,从而得出,即可得到,根据是线段上一点(不与点、重合),不存在,可得出当为等腰三角形时,仅有两种情形:或,分类讨论即可求得答案. 【详解】 解:(1)如图1,过点作于,于, 两条纸条宽度相同, . ,, 四边形是平行四边形. . , 四边形是菱形; (2)①如图2,过点作于,连接, 则, 四边形是菱形, 与互相垂直平分, 经过点, , ,, , , , , , 在和中, , , , , ,,, , , , , , , , , , , ; ②, 设,则, 设,则, , , , , , , , , 即, , , 是线段上一点(不与点、重合), 不存在, 当为等腰三角形时,仅有两种情形:或, Ⅰ.当时,则,如图3, ,, , , , , ; Ⅱ.当时,如图4,过点作于点, 在中,, , , , ; 综上所述,当为等腰三角形时,的值为或. 【点睛】 本题是四边形综合题,考查了平行四边形的判定与性质,菱形的判定与性质,全等三角形判定和性质,三角形面积公式,菱形面积,等腰三角形性质,勾股定理等,运用分类讨论思想和方程思想思考解决问题是解题关键. 24.(1)A(﹣1,0),D(0,5);(2)d=(m﹣2);(3)点P的坐标为(3,4). 【解析】 【分析】 (1)分别令直线y=x+1,直线y=-x+5x0,y=0,即可求得A点坐标和D点坐标; 解析:(1)A(﹣1,0),D(0,5);(2)d=(m﹣2);(3)点P的坐标为(3,4). 【解析】 【分析】 (1)分别令直线y=x+1,直线y=-x+5x0,y=0,即可求得A点坐标和D点坐标; (2))过点P作PM⊥x轴,交CD于F,M是垂足,先求出P、F的坐标,即可求出PE=2m4,再通过已知和辅助线判断△PEF是等腰直角三角形,从而得出PE=PF,即可得出结论; (3)先过点C作CN⊥DP,交DP的延长线于点N,连接OP,ON,过O作OG⊥ON,交PD的延长线于G,然后证明△ODG≌△OCN,再证明△OCN≌△OPN,得出OP=5,在直角三角形OMP中用勾股定理求解即可. 【详解】 解:(1)∵直线y=x+1分别交x轴、y轴于点A、B, ∴令x=0,则y=1,令y=0,则x=﹣1, ∴A(﹣1,0),B(0,1), 又∵直线y=﹣x+5分别交x轴、y轴于点C、D, ∴令x=0,则y=5,令y=0,则x=5, ∴C(5,0),D(0,5) ∴A(﹣1,0),D(0,5); (2)过点P作PM⊥x轴,交CD于F,M是垂足,如图所示, 由(1)知OA=OB,OC=OD, ∴∠ABO=∠DCO=45°, ∴△AEC为等腰直角三角形, ∴∠PEF=90°, 又∵∠DCO=45°, ∴∠EFP=∠MFC=45°, ∴△PEF为等腰直角三角形, ∴PE=EF=PF, ∵P在直线y=x+1上,P的横坐标为m, ∴P(m,m+1), F在直线y=﹣x+5上,F的横坐标为m, ∴F(m,﹣m+5), ∴PF=m+1﹣(﹣m+5)=m+1+m﹣5=2m﹣4, ∴d=PE=PF=(2m﹣4)=(m﹣2); (3)过点C作CN⊥DP,交DP的延长线于点N,连接OP,ON, 过O作OG⊥ON,交PD的延长线于G,如图所示, ∵∠DOC=∠CND=90°, ∴∠ODN+∠OCN=180°, 又∵∠ODG+∠ODN=180°, ∴∠ODG=∠OCN, ∵∠DOG=90°﹣∠DON,∠CON=90°﹣∠DON, ∴∠DOG=∠CON, 在△ODG和△OCN中, ∴△ODG≌△OCN(ASA), ∴OG=ON, ∴∠ONG=∠OGN=45°, ∴∠CNO=∠PNO=45°, ∵∠CPD=135°,CN⊥DP, ∴∠CPN=45°, ∴∠PCN=45°, ∴NP=NC, 在△OCN和△OPN中, , ∴△OCN≌△OPN(SAS), ∴OP=OC=5, 在Rt△OPM中, OP2=OM2+MP2, ∴52=m2+(m+1)2, 解得:m=3或m=﹣4(舍去), ∴m+1=4, ∴点P的坐标为(3,4). 【点睛】 此题考查了一次函数与坐标轴的交点,勾股定理,坐标与图形性质,等腰直角三角形的判定与性质,关键是通过作辅助线证明三角形全等,把条件转化到直角三角形OPM中. 25.(1)见解析;(2)①45°;②GH2+BH2=2CD2,理由见解析 【分析】 (1)证△CBE≌△CDF(SAS),即可得出结论; (2)①证△DCP≌△GCP(SSS),得∠DCP=∠GCP,再 解析:(1)见解析;(2)①45°;②GH2+BH2=2CD2,理由见解析 【分析】 (1)证△CBE≌△CDF(SAS),即可得出结论; (2)①证△DCP≌△GCP(SSS),得∠DCP=∠GCP,再由全等三角形的性质得∠BCE=∠DCP=∠GCP=20°,则∠BCG=130°,然后由等腰三角形的性质和三角形内角和定理得∠CGH=25°,即可求解; ②连接BD,由①得CP垂直平分DG,则HD=HG,∠GHF=∠DHF,设∠BCE=m°,证出∠GHF=∠CHB=45°,再证∠DHB=90°,然后由勾股定理得DH2+BH2=BD2,进而得出结论. 【详解】 (1)证明:∵四边形ABCD是正方形, ∴CB=CD,∠CBE=∠CDF=90°, 在△CBE和△CDF中, , ∴△CBE≌△CDF(SAS), ∴CE=CF; (2)解:①点D关于CF的对称点G, ∴CD=CG,DP=GP, 在△DCP和△GCP中, , ∴△DCP≌△GCP(SSS), ∴∠DCP=∠GCP, 由(1)得:△CBE≌△CDF, ∴∠BCE=∠DCP=∠GCP=20°, ∴∠BCG=20°+20°+90°=130°, ∵CG=CD=CB, ∴∠CGH=, ∴∠CHB=∠CGH+∠GCP=25°+20°=45°; ②线段CD,GH,BH之间的数量关系为:GH2+BH2=2CD2,理由如下: 连接BD,如图2所示: 由①得:CP垂直平分DG, ∴HD=HG,∠GHF=∠DHF, 设∠BCE=m°, 由①得:∠BCE=∠DCP=∠GCP=m°, ∴∠BCG=m°+m°+90°=2m°+90°, ∵CG=CD=CB, ∴∠CGH=, ∴∠CHB=∠CGH+∠GCP=45°−m°+m°=45°, ∴∠GHF=∠CHB=45°, ∴∠GHD=∠GHF+∠DHF=45°+45°=90°, ∴∠DHB=90°, 在Rt△BDH中,由勾股定理得:DH2+BH2=BD2, ∴GH2+BH2=BD2, 在Rt△BCD中,CB=CD, ∴BD2=2CD2, ∴GH2+BH2=2CD2. 【点睛】 本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、线段垂直平分线的性质、勾股定理以及三角形内角和定理等知识;本题综合性强,熟练掌握正方形的性质,证明△CBE≌△CDF和△DCP≌△GCP是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八年 级数 下册 期末试卷 测试 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文