人教七年级下册数学期末解答题综合复习试卷含答案.doc
《人教七年级下册数学期末解答题综合复习试卷含答案.doc》由会员分享,可在线阅读,更多相关《人教七年级下册数学期末解答题综合复习试卷含答案.doc(36页珍藏版)》请在咨信网上搜索。
人教七年级下册数学期末解答题综合复习试卷含答案 一、解答题 1.如图,用两个面积为的小正方形拼成一个大的正方形. (1)则大正方形的边长是___________; (2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为? 2.学校要建一个面积是81平方米的草坪,草坪周围用铁栅栏围绕,现有两种方案:有人建议建成正方形,也有人建议建成圆形,如果从节省铁栅栏费用的角度考虑(栅栏周长越小,费用越少),你选择哪种方案?请说明理由.(π取3) 3.如图,用两个边长为10的小正方形拼成一个大的正方形. (1)求大正方形的边长? (2)若沿此大正方形边的方向出一个长方形,能否使裁出的长方形的长宽之比为3:2,且面积为480cm2? 4.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m2的正方形场地改建成300m2的长方形场地,且其长、宽的比为5:3. (1)求原来正方形场地的周长; (2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由. 5.小丽想用一块面积为的正方形纸片,如图所示,沿着边的方向裁出一块面积为的长方形纸片,使它的长是宽的2倍.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗?为什么? 二、解答题 6.已知,,. (1)如图1,求证:; (2)如图2,作的平分线交于点,点为上一点,连接,若的平分线交线段于点,连接,若,过点作交的延长线于点,且,求的度数. 7.如图,直线,一副直角三角板中,. (1)若如图1摆放,当平分时,证明:平分. (2)若如图2摆放时,则 (3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数. (4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长. (5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间. 8.如图1,点在直线、之间,且. (1)求证:; (2)若点是直线上的一点,且,平分交直线于点,若,求的度数; (3)如图3,点是直线、外一点,且满足,,与交于点.已知,且,则的度数为______(请直接写出答案,用含的式子表示). 9.如图,,直线与、分别交于点、,点在直线上,过点作,垂足为点. (1)如图1,求证:; (2)若点在线段上(不与、、重合),连接,和的平分线交于点请在图2中补全图形,猜想并证明与的数量关系; 10.已知AB∥CD,线段EF分别与AB,CD相交于点E,F. (1)请在横线上填上合适的内容,完成下面的解答: 如图1,当点P在线段EF上时,已知∠A=35°,∠C=62°,求∠APC的度数; 解:过点P作直线PH∥AB, 所以∠A=∠APH,依据是 ; 因为AB∥CD,PH∥AB, 所以PH∥CD,依据是 ; 所以∠C=( ), 所以∠APC=( )+( )=∠A+∠C=97°. (2)当点P,Q在线段EF上移动时(不包括E,F两点): ①如图2,∠APQ+∠PQC=∠A+∠C+180°成立吗?请说明理由; ②如图3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,请直接写出∠M,∠A与∠C的数量关系. 三、解答题 11.将两块三角板按如图置,其中三角板边,,,. (1)下列结论:正确的是_______. ①如果,则有; ②; ③如果,则平分. (2)如果,判断与是否相等,请说明理由. (3)将三角板绕点顺时针转动,直到边与重合即停止,转动的过程中当两块三角板恰有两边平行时,请直接写出所有可能的度数. 12.如图,,平分,设为,点E是射线上的一个动点. (1)若时,且,求的度数; (2)若点E运动到上方,且满足,,求的值; (3)若,求的度数(用含n和的代数式表示). 13.已知,交AC于点E,交AB于点F. (1)如图1,若点D在边BC上, ①补全图形; ②求证:. (2)点G是线段AC上的一点,连接FG,DG. ①若点G是线段AE的中点,请你在图2中补全图形,判断,,之间的数量关系,并证明; ②若点G是线段EC上的一点,请你直接写出,,之间的数量关系. 14.如图1,,在、内有一条折线. (1)求证:; (2)在图2中,画的平分线与的平分线,两条角平分线交于点,请你补全图形,试探索与之间的关系,并证明你的结论; (3)在(2)的条件下,已知和均为钝角,点在直线、之间,且满足,,(其中为常数且),直接写出与的数量关系. 15.如图1,D是△ABC延长线上的一点,CEAB. (1)求证:∠ACD=∠A+∠B; (2)如图2,过点A作BC的平行线交CE于点H,CF平分∠ECD,FA平分∠HAD,若∠BAD=70°,求∠F的度数. (3)如图3,AHBD,G为CD上一点,Q为AC上一点,GR平分∠QGD交AH于R,QN平分∠AQG交AH于N,QMGR,猜想∠MQN与∠ACB的关系,说明理由. 四、解答题 16.小明在学习过程中,对教材中的一个有趣问题做如下探究: (习题回顾)已知:如图1,在中,,是角平分线,是高,、相交于点.求证:; (变式思考)如图2,在中,,是边上的高,若的外角的平分线交的延长线于点,其反向延长线与边的延长线交于点,则与还相等吗?说明理由; (探究延伸)如图3,在中,上存在一点,使得,的平分线交于点.的外角的平分线所在直线与的延长线交于点.直接写出与的数量关系. 17.如图所示,已知射线.点E、F在射线CB上,且满足,OE平分 (1)求的度数; (2)若平行移动AB,那么的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值; (3)在平行移动AB的过程中,是否存在某种情况,使?若存在,求出其度数.若不存在,请说明理由. 18.如图①,平分,⊥,∠B=450,∠C=730. (1) 求的度数; (2) 如图②,若把“⊥”变成“点F在DA的延长线上,”,其它条件不变,求 的度数; (3) 如图③,若把“⊥”变成“平分”,其它条件不变,的大小是否变化,并请说明理由. 19.如图1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC. (1)求证:∠BED=90°; (2)如图2,延长BE交CD于点H,点F为线段EH上一动点,∠EDF=α,∠ABF的角平分线与∠CDF的角平分线DG交于点G,试用含α的式子表示∠BGD的大小; (3)如图3,延长BE交CD于点H,点F为线段EH上一动点,∠EBM的角平分线与∠FDN的角平分线交于点G,探究∠BGD与∠BFD之间的数量关系,请直接写出结论: . 20.如图①所示,在三角形纸片中,,,将纸片的一角折叠,使点落在内的点处. (1)若,________. (2)如图①,若各个角度不确定,试猜想,,之间的数量关系,直接写出结论. ②当点落在四边形外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,,,之间又存在什么关系?请说明. (3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的和是________. 【参考答案】 一、解答题 1.(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析 【分析】 (1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长; (2)设长方形纸片的长为,宽为,根据 解析:(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析 【分析】 (1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长; (2)设长方形纸片的长为,宽为,根据面积列得,求出,得到,由此判断不能裁出符合条件的大正方形. 【详解】 (1)∵用两个面积为的小正方形拼成一个大的正方形, ∴大正方形的面积为400, ∴大正方形的边长为 故答案为:20cm; (2)设长方形纸片的长为,宽为, , 解得:, , 答:不能剪出长宽之比为5:4,且面积为的大长方形. 【点睛】 此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键. 2.选择建成圆形草坪的方案,理由详见解析 【分析】 根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答 解析:选择建成圆形草坪的方案,理由详见解析 【分析】 根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答案. 【详解】 解:选择建成圆形草坪的方案,理由如下: 设建成正方形时的边长为x米, 由题意得:x2=81, 解得:x=±9, ∵x>0, ∴x=9, ∴正方形的周长为4×9=36, 设建成圆形时圆的半径为r米, 由题意得:πr2=81. 解得:, ∵r>0. ∴, ∴圆的周长=, ∵, ∴, ∴建成圆形草坪时所花的费用较少, 故选择建成圆形草坪的方案. 【点睛】 本题考查的是算术平方根的应用,掌握算术平方根概念是解题的关键. 3.(1)大正方形的边长是;(2)不能 【分析】 (1)根据已知正方形的面积求出大正方形的面积,即可求出边长; (2)先求出长方形的边长,再判断即可. 【详解】 (1)大正方形的边长是 (2)设长方形纸 解析:(1)大正方形的边长是;(2)不能 【分析】 (1)根据已知正方形的面积求出大正方形的面积,即可求出边长; (2)先求出长方形的边长,再判断即可. 【详解】 (1)大正方形的边长是 (2)设长方形纸片的长为3xcm,宽为2xcm, 则3x•2x=480, 解得:x= 因为,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为2:3,且面积为480cm2. 【点睛】 本题考查算术平方根,解题的关键是能根据题意列出算式. 4.(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用. 【分析】 (1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可; (2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为 解析:(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用. 【分析】 (1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可; (2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为5am,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用. 【详解】 解:(1)=20(m),4×20=80(m), 答:原来正方形场地的周长为80m; (2)设这个长方形场地宽为3am,则长为5am. 由题意有:3a×5a=300, 解得:a=±, ∵3a表示长度, ∴a>0, ∴a=, ∴这个长方形场地的周长为 2(3a+5a)=16a=16(m), ∵80=16×5=16×>16, ∴这些铁栅栏够用. 【点睛】 本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长. 5.不同意,理由见解析 【分析】 先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断. 【详解】 解:不同意, 因为正方形的面积为, 解析:不同意,理由见解析 【分析】 先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断. 【详解】 解:不同意, 因为正方形的面积为,故边长为 设长方形宽为,则长为 长方形面积 ∴, 解得(负值舍去) 长为 即长方形的长大于正方形的边长, 所以不能裁出符合要求的长方形纸片 【点睛】 本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键. 二、解答题 6.(1)见解析;(2) 【分析】 (1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证; (2)过点E作,延长DC至Q,过点M作,根据平行线的性质及等量代换可得出,再根据平角的 解析:(1)见解析;(2) 【分析】 (1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证; (2)过点E作,延长DC至Q,过点M作,根据平行线的性质及等量代换可得出,再根据平角的含义得出,然后根据平行线的性质及角平分线的定义可推出;设,根据角的和差可得出,结合已知条件可求得,最后根据垂线的含义及平行线的性质,即可得出答案. 【详解】 (1)证明: ; (2)过点E作,延长DC至Q,过点M作 ,,, AF平分 FH平分 设 , . 【点睛】 本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键. 7.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】 (1)运用角平分线定义及平行线性质即可证得结论; (2)如图2,过点E作EK∥MN,利用平行线性 解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】 (1)运用角平分线定义及平行线性质即可证得结论; (2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案; (3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案; (4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案; (5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可. 【详解】 (1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°, ∵ED平分∠PEF, ∴∠PEF=2∠PED=2∠DEF=2×60°=120°, ∵PQ∥MN, ∴∠MFE=180°−∠PEF=180°−120°=60°, ∴∠MFD=∠MFE−∠DFE=60°−30°=30°, ∴∠MFD=∠DFE, ∴FD平分∠EFM; (2)如图2,过点E作EK∥MN, ∵∠BAC=45°, ∴∠KEA=∠BAC=45°, ∵PQ∥MN,EK∥MN, ∴PQ∥EK, ∴∠PDE=∠DEK=∠DEF−∠KEA, 又∵∠DEF=60°. ∴∠PDE=60°−45°=15°, 故答案为:15°; (3)如图3,分别过点F、H作FL∥MN,HR∥PQ, ∴∠LFA=∠BAC=45°,∠RHG=∠QGH, ∵FL∥MN,HR∥PQ,PQ∥MN, ∴FL∥PQ∥HR, ∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA, ∵∠FGQ和∠GFA的角平分线GH、FH相交于点H, ∴∠QGH=∠FGQ,∠HFA=∠GFA, ∵∠DFE=30°, ∴∠GFA=180°−∠DFE=150°, ∴∠HFA=∠GFA=75°, ∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°, ∴∠GFL=∠GFA−∠LFA=150°−45°=105°, ∴∠RHG=∠QGH=∠FGQ=(180°−105°)=37.5°, ∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°; (4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A, ∴D′A=DF,DD′=EE′=AF=5cm, ∵DE+EF+DF=35cm, ∴DE+EF+D′A+AF+DD′=35+10=45(cm), 即四边形DEAD′的周长为45cm; (5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°, 分三种情况: BC∥DE时,如图5,此时AC∥DF, ∴∠CAE=∠DFE=30°, ∴3t=30, 解得:t=10; BC∥EF时,如图6, ∵BC∥EF, ∴∠BAE=∠B=45°, ∴∠BAM=∠BAE+∠EAM=45°+45°=90°, ∴3t=90, 解得:t=30; BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R, ∵∠DRM=∠EAM+∠DFE=45°+30°=75°, ∴∠BKA=∠DRM=75°, ∵∠ACK=180°−∠ACB=90°, ∴∠CAK=90°−∠BKA=15°, ∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°, ∴3t=120, 解得:t=40, 综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行. 【点睛】 本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键. 8.(1)见解析;(2)10°;(3) 【分析】 (1)过点E作EF∥CD,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明; (2)过点E作HE∥CD,设 由(1)得AB∥CD 解析:(1)见解析;(2)10°;(3) 【分析】 (1)过点E作EF∥CD,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明; (2)过点E作HE∥CD,设 由(1)得AB∥CD,则AB∥CD∥HE,由平行线的性质,得出再由平分,得出则,则可列出关于x和y的方程,即可求得x,即的度数; (3)过点N作NP∥CD,过点M作QM∥CD,由(1)得AB∥CD,则NP∥CD∥AB∥QM,根据和,得出根据CD∥PN∥QM,DE∥NB,得出即根据NP∥AB,得出再由,得出由AB∥QM,得出因为,代入的式子即可求出. 【详解】 (1)过点E作EF∥CD,如图, ∵EF∥CD, ∴ ∴ ∵, ∴ ∴EF∥AB, ∴CD∥AB; (2)过点E作HE∥CD,如图, 设 由(1)得AB∥CD,则AB∥CD∥HE, ∴ ∴ 又∵平分, ∴ ∴ 即 解得:即; (3)过点N作NP∥CD,过点M作QM∥CD,如图, 由(1)得AB∥CD,则NP∥CD∥AB∥QM, ∵NP∥CD,CD∥QM, ∴, 又∵, ∴ ∵, ∴ ∴ 又∵PN∥AB, ∴ ∵, ∴ 又∵AB∥QM, ∴ ∴ ∴. 【点睛】 本题考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造相等的角,利用两直线平行,内错角相等,同位角相等来计算和推导角之间的关系. 9.(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,. 【分析】 (1)过点作,根据平行线的性质即可求解; (2)分两种情况:当点在上,当点在上,再过点作即可求解. 【详解】 (1)证明: 解析:(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,. 【分析】 (1)过点作,根据平行线的性质即可求解; (2)分两种情况:当点在上,当点在上,再过点作即可求解. 【详解】 (1)证明:如图,过点作, ∴, ∵, ∴. ∴. ∵, ∴, ∴. (2)补全图形如图2、图3, 猜想:或. 证明:过点作. ∴. ∵, ∴ ∴, ∴. ∵平分, ∴. 如图3,当点在上时, ∵平分, ∴, ∵, ∴, 即. 如图2,当点在上时, ∵平分, ∴. ∴. 即. 【点睛】 本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系. 10.(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°. 解析:(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°. 【分析】 (1)根据平行线的判定与性质即可完成填空; (2)结合(1)的辅助线方法即可完成证明; (3)结合(1)(2)的方法,根据∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可证明∠PMQ,∠A与∠C的数量关系. 【详解】 解:过点P作直线PH∥AB, 所以∠A=∠APH,依据是两直线平行,内错角相等; 因为AB∥CD,PH∥AB, 所以PH∥CD,依据是平行于同一条直线的两条直线平行; 所以∠C=(∠CPH), 所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°. 故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH; (2)①如图2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下: 过点P作直线PH∥AB,QG∥AB, ∵AB∥CD, ∴AB∥CD∥PH∥QG, ∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°, ∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°. ∴∠APQ+∠PQC=∠A+∠C+180°成立; ②如图3, 过点P作直线PH∥AB,QG∥AB,MN∥AB, ∵AB∥CD, ∴AB∥CD∥PH∥QG∥MN, ∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN, ∴∠PMQ=∠HPM+∠GQM, ∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°, ∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ), ∴3∠PMQ+∠A+∠C=360°. 【点睛】 考核知识点:平行线的判定和性质.熟练运用平行线性质和判定,添加适当辅助线是关键. 三、解答题 11.(1)②③;(2)相等,理由见解析;(3)30°或45°或75°或120°或135° 【分析】 (1)根据平行线的判定和性质分别判定即可; (2)利用角的和差,结合∠CAB=∠DAE=90°进行判断 解析:(1)②③;(2)相等,理由见解析;(3)30°或45°或75°或120°或135° 【分析】 (1)根据平行线的判定和性质分别判定即可; (2)利用角的和差,结合∠CAB=∠DAE=90°进行判断; (3)依据这两块三角尺各有一条边互相平行,分五种情况讨论,即可得到∠EAB角度所有可能的值. 【详解】 解:(1)①∵∠BFD=60°,∠B=45°, ∴∠BAD+∠D=∠BFD+∠B=105°, ∴∠BAD=105°-30°=75°, ∴∠BAD≠∠B, ∴BC和AD不平行,故①错误; ②∵∠BAC+∠DAE=180°, ∴∠BAE+∠CAD=∠BAE+∠CAE+∠DAE=180°,故②正确; ③若BC∥AD, 则∠BAD=∠B=45°, ∴∠BAE=45°, 即AB平分∠EAD,故③正确; 故答案为:②③; (2)相等,理由是: ∵∠CAD=150°, ∴∠BAE=180°-150°=30°, ∴∠BAD=60°, ∵∠BAD+∠D=∠BFD+∠B, ∴∠BFD=60°+30°-45°=45°=∠C; (3)若AC∥DE, 则∠CAE=∠E=60°, ∴∠EAB=90°-60°=30°; 若BC∥AD, 则∠B=∠BAD=45°, ∴∠EAB=45°; 若BC∥DE, 则∠E=∠AFB=60°, ∴∠EAB=180°-60°-45°=75°; 若AB∥DE, 则∠D=∠DAB=30°, ∴∠EAB=30°+90°=120°; 若AE∥BC, 则∠C=∠CAE=45°, ∴∠EAB=45°+90°=135°; 综上:∠EAB的度数可能为30°或45°或75°或120°或135°. 【点睛】 本题考查了平行线的判定和性质,角平分线的定义,解题的关键是理解题意,分情况画出图形,学会用分类讨论的思想思考问题. 12.(1)60°;(2)50°;(3)或 【分析】 (1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数; (2)根据题意画出图形,先 解析:(1)60°;(2)50°;(3)或 【分析】 (1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数; (2)根据题意画出图形,先根据可计算出的度数,由可计算出的度数,再根据平行线的性质和角平分线的性质,计算出的度数,即可得出结论; (3)根据题意可分两种情况,①若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,,列出等量关系求解即可等处结论;②若点运动到下方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论. 【详解】 解:(1),, , 平分, , , 又, ; (2)根据题意画图,如图1所示, ,, , , , , 又平分, , ; (3)①如图2所示, , , 平分, , , 又, , , 解得; ②如图3所示, , , 平分, , , 又, , , 解得. 综上的度数为或. 【点睛】 本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补. 两直线平行,内错角相等.合理应用平行线的性质是解决本题的关键. 13.(1)①见解析;②;见解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF 【分析】 (1)①根据题意画出图形;②依据DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠ 解析:(1)①见解析;②;见解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF 【分析】 (1)①根据题意画出图形;②依据DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠A+∠AFD=180°,进而得出∠EDF=∠A; (2)①过G作GH∥AB,依据平行线的性质,即可得到∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②过G作GH∥AB,依据平行线的性质,即可得到∠AFG-∠EDG=∠FGH-∠DGH=∠DGF. 【详解】 解:(1)①如图, ②∵DE∥AB,DF∥AC, ∴∠EDF+∠AFD=180°,∠A+∠AFD=180°, ∴∠EDF=∠A; (2)①∠AFG+∠EDG=∠DGF. 如图2所示,过G作GH∥AB, ∵AB∥DE, ∴GH∥DE, ∴∠AFG=∠FGH,∠EDG=∠DGH, ∴∠AFG+∠EDG=∠FGH+∠DGH=∠DGF; ②∠AFG-∠EDG=∠DGF. 如图所示,过G作GH∥AB, ∵AB∥DE, ∴GH∥DE, ∴∠AFG=∠FGH,∠EDG=∠DGH, ∴∠AFG-∠EDG=∠FGH-∠DGH=∠DGF. 【点睛】 本题考查了平行线的判定和性质:两直线平行,内错角相等.正确的作出辅助线是解题的关键. 14.(1)见解析;(2);见解析;(3) 【分析】 (1)过点作,根据平行线性质可得; (2)由(1)结论可得:,,再根据角平分线性质可得; (3)由(2)结论可得:. 【详解】 (1)证明:如图1,过 解析:(1)见解析;(2);见解析;(3) 【分析】 (1)过点作,根据平行线性质可得; (2)由(1)结论可得:,,再根据角平分线性质可得; (3)由(2)结论可得:. 【详解】 (1)证明:如图1,过点作, ∵, ∴, ∴,, 又∵, ∴; (2)如图2, 由(1)可得:,, ∵的平分线与的平分线相交于点, ∴ , ∴; (3)由(2)可得:,, ∵,, ∴ , ∴; 【点睛】 考核知识点:平行线性质和判定的综合运用.熟练运用平行线性质和判定是关键. 15.(1)证明见解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由见解析. 【分析】 (1)首先根据平行线的性质得出∠ACE=∠A,∠ECD=∠B,然后通过等量代换即可得出答案; (2)首先根据角 解析:(1)证明见解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由见解析. 【分析】 (1)首先根据平行线的性质得出∠ACE=∠A,∠ECD=∠B,然后通过等量代换即可得出答案; (2)首先根据角平分线的定义得出∠FCD=∠ECD,∠HAF=∠HAD,进而得出∠F=(∠HAD+∠ECD),然后根据平行线的性质得出∠HAD+∠ECD的度数,进而可得出答案; (3)根据平行线的性质及角平分线的定义得出,, ,再通过等量代换即可得出∠MQN=∠ACB. 【详解】 解:(1)∵CEAB, ∴∠ACE=∠A,∠ECD=∠B, ∵∠ACD=∠ACE+∠ECD, ∴∠ACD=∠A+∠B; (2)∵CF平分∠ECD,FA平分∠HAD, ∴∠FCD=∠ECD,∠HAF=∠HAD, ∴∠F=∠HAD+∠ECD=(∠HAD+∠ECD), ∵CHAB, ∴∠ECD=∠B, ∵AHBC, ∴∠B+∠HAB=180°, ∵∠BAD=70°, , ∴∠F=(∠B+∠HAD)=55°; (3)∠MQN=∠ACB,理由如下: 平分, . 平分, . , . ∴∠MQN=∠MQG﹣∠NQG =180°﹣∠QGR﹣∠NQG =180°﹣(∠AQG+∠QGD) =180°﹣(180°﹣∠CQG+180°﹣∠QGC) =(∠CQG+∠QGC) =∠ACB. 【点睛】 本题主要考查平行线的性质和角平分线的定义,掌握平行线的性质和角平分线的定义是解题的关键. 四、解答题 16.[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析. 【分析】 [习题回顾]根据同角的余角相等可证明∠B=∠ACD,再根据三角形的外角的性质即可 解析:[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析. 【分析】 [习题回顾]根据同角的余角相等可证明∠B=∠ACD,再根据三角形的外角的性质即可证明; [变式思考]根据角平分线的定义和对顶角相等可得∠CAE=∠DAF、再根据直角三角形的性质和等角的余角相等即可得出=; [探究延伸]根据角平分线的定义可得∠EAN=90°,根据直角三角形两锐角互余可得∠M+∠CEF=90°,再根据三角形外角的性质可得∠CEF=∠CFE,由此可证∠M+∠CFE=90°. 【详解】 [习题回顾]证明:∵∠ACB=90°,CD是高, ∴∠B+∠CAB=90°,∠ACD+∠CAB=90°, ∴∠B=∠ACD, ∵AE是角平分线, ∴∠CAF=∠DAF, ∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B, ∴∠CEF=∠CFE; [变式思考]相等,理由如下: 证明:∵AF为∠BAG的角平分线, ∴∠GAF=∠DAF, ∵∠CAE=∠GAF, ∴∠CAE=∠DAF, ∵CD为AB边上的高,∠ACB=90°, ∴∠ADC=90°, ∴∠ADF=∠ACE=90°, ∴∠DAF+∠F=90°,∠E+∠CAE=90°, ∴∠CEF=∠CFE; [探究延伸]∠M+∠CFE=90°, 证明:∵C、A、G三点共线 AE、AN为角平分线, ∴∠EAN=90°, 又∵∠GAN=∠CAM, ∴∠M+∠CEF=90°, ∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B, ∴∠CEF=∠CFE, ∴∠M+∠CFE=90°. 【点睛】 本题考查三角形的外角的性质,直角三角形两锐角互余,角平分线的有关证明,等角或同角的余角相等.在本题中用的比较多的是利用等角或同角的余角相等证明角相等和三角形一个外角等于与它不相邻的两个内角之和,理解并掌握是解决此题的关键. 17.(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°. 【分析】 (1)根据OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,从而得出答案; (2 解析:(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°. 【分析】 (1)根据OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,从而得出答案; (2)根据平行线的性质,即可得出∠OBC=∠BOA,∠OFC=∠FOA,再根据∠FOA=∠FOB+∠AOB=2∠AOB,即可得出∠OBC:∠OFC的值为1:2. (3)设∠AOB=x,根据两直线平行,内错角相等表示出∠CBO=∠AOB=x,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠OEC,然后利用三角形的内角和等于180°列式表示出∠OBA,然后列出方程求解即可. 【详解】 (1)∵CB∥OA ∴∠C+∠COA=180° ∵∠C=100° ∴∠COA=180°-∠C=80° ∵∠FOB=∠AOB,OE平分∠COF ∴∠FOB+∠EOF=(∠AOF+∠COF)=∠COA=40°; ∴∠EOB=40°; (2)∠OBC:∠OFC的值不发生变化 ∵CB∥OA ∴∠OBC=∠BOA,∠OFC=∠FOA ∵∠FOB=∠AOB ∴∠FOA=2∠BOA ∴∠OFC=2∠OBC ∴∠OBC:∠OFC=1:2 (3)当平行移动AB至∠OBA=60°时,∠OEC=∠OBA. 设∠AOB=x, ∵CB∥AO, ∴∠CBO=∠AOB=x, ∵CB∥OA,AB∥OC, ∴∠OAB+∠ABC=180°,∠C+∠ABC=180° ∴∠OAB=∠C=100°. ∵∠OEC=∠CBO+∠EOB=x+40°, ∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x, ∴x+40°=80°-x, ∴x=20°, ∴∠OEC=∠OBA=80°-20°=60°. 【- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教七 年级 下册 数学 期末 解答 综合 复习 试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文