初二上学期压轴题强化数学质量检测试题[002].doc
《初二上学期压轴题强化数学质量检测试题[002].doc》由会员分享,可在线阅读,更多相关《初二上学期压轴题强化数学质量检测试题[002].doc(24页珍藏版)》请在咨信网上搜索。
初二上学期压轴题强化数学质量检测试题 1.如图,是等边三角形,点分别是射线、射线上的动点,点D从点A出发沿着射线移动,点E从点B出发沿着射线移动,点同时出发并且移动速度相同,连接. (1)如图①,当点D移动到线段的中点时,与的长度关系是:_______. (2)如图②,当点D在线段上移动但不是中点时,探究与之间的数量关系,并证明你的结论. (3)如图③,当点D移动到线段的延长线上,并且时,求的度数. 2.已知:AD为△ABC的中线,分别以AB和AC为一边在△ABC的外部作等腰三角形ABE和等腰三角形ACF,且AE=AB,AF=AC,连接EF,∠EAF+∠BAC=180°. (1)如图1,若∠ABE=65°,∠ACF=75°,求∠BAC的度数. (2)如图1,求证:EF=2AD. (3)如图2,设EF交AB于点G,交AC于点R,FC与EB交于点M,若点G为EF中点,且∠BAE=60°,请探究∠GAF和∠CAF的数量关系,并证明你的结论. 3.如图,中,,. (1)如图1,,,求证:; (2)如图2,,,请直接用几何语言写出、的位置关系____________; (3)证明(2)中的结论. 4.如图,在平面直角坐标系中,点A(a,0),B(0,b),且a,b满足. (1)直接写出______,______; (2)连接AB,P为内一点,. ①如图1,过点作,且,连接并延长,交于.求证:; ②如图2,在的延长线上取点,连接.若,点P(2n,−n),试求点的坐标. 5.在平面直角坐标系中,,点在第一象限,, (1)如图,求点的坐标. (2)如图,作的角平分线,交于点,过点作于点,求证: (3)若点在第二象限,且为等腰直角三角形,请直接写出所有满足条件的点的坐标. 6.在平面直角坐标系中,直线 AB 分别交 x 轴、y 轴于点A(–a,0)、点 B(0, b),且 a、b 满足a2+b2–4a–8b+20=0,点 P 在直线 AB 的右侧,且∠APB=45°. (1)a= ;b= . (2)若点 P 在 x 轴上,请在图中画出图形(BP 为虚线),并写出点 P 的坐标; (3)若点 P 不在 x 轴上,是否存在点P,使△ABP 为直角三角形?若存在,请求出此时P的坐标;若不存在,请说明理由. 7.在平面直角坐标系中,点A(a,0),点B(0,b),已知a,b满足. (1)求点A和点B的坐标; (2)如图1,点E为线段OB的中点,连接AE,过点A在第二象限作,且,连接BF交x轴于点D,求点D和点F的坐标;: (3)在(2)的条件下,如图2,过点E作交AB于点P,M是EP延长线上一点,且,连接MO,作,ON交BA的延长线于点N,连接MN,求点N的坐标. 8.如图,在等边△ABC中,AB=AC=BC=6cm,现有两点M、N分别从点A、B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次回到点B时,点M、N同时停止运动,设运动时间为ts. (1)当t为何值时,M、N两点重合; (2)当点M、N分别在AC、BA边上运动,△AMN的形状会不断发生变化. ①当t为何值时,△AMN是等边三角形; ②当t为何值时,△AMN是直角三角形; (3)若点M、N都在BC边上运动,当存在以MN为底边的等腰△AMN时,求t的值. 【参考答案】 2.(1) (2),证明见详解 (3) 【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证; (2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可 解析:(1) (2),证明见详解 (3) 【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证; (2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可知为等边三角形,再利用边角边即可证明,最后根据全等三角形的性质即可证明; (3)按照第(2)问的思路,作出类似的辅助线:在射线CB上截取,如图(见详解),用同样的方法证明,再根据ED⊥DC,证出为等腰直角三角形,即可求出∠DEC的度数. (1) 解:, 证明过程如下:由题意可知, ∵D为AB的中点, ∴, ∴, ∴. ∵为等边三角形,, ∴. ∵, ∴, ∴, ∴. (2) 解:, 理由如下:在射线AB上截取,连接EF,如图所示, ∵为等边三角形, ∴,. ∵,, ∴为等边三角形, ∴,. 由题意知, ∴, ∴. 即. ∵, ∴. 在和中,, ∴, ∴DE与DC之间的数量关系是. (3) 如图,在射线CB上截取,连接DF,如图所示, ∵为等边三角形, ∴,. ∵,, ∴为等边三角形, ∴,, ∴. 由题意知, ∵, ∴, 即. ∵, ∴. 在和中,, ∴, ∴. ∵ED⊥DC, ∴为等腰直角三角形, ∴. 【点睛】本题主要考查了等腰三角形,等边三角形,以及全等三角形的判定及性质,能够作出辅助线,并合理利用等边三角形的性质是解题的关键. 3.(1)∠BAC=50° (2)见解析 (3)∠GAF﹣∠CAF=60°,理由见解析 【分析】(1)利用三角形的内角和定理求出∠EAB,∠CAF,再根据∠EAF+∠BAC=180°构建方程即可解 解析:(1)∠BAC=50° (2)见解析 (3)∠GAF﹣∠CAF=60°,理由见解析 【分析】(1)利用三角形的内角和定理求出∠EAB,∠CAF,再根据∠EAF+∠BAC=180°构建方程即可解决问题; (2)延长AD至H,使DH=AD,连接BH,想办法证明△ABH≌△EAF即可解决问题; (3)结论:∠GAF﹣∠CAF=60°.想办法证明△ACD≌△FAG,推出∠ACD=∠FAG,再证明∠BCF=150°即可. (1) 解:∵AE=AB, ∴∠AEB=∠ABE=65°, ∴∠EAB=50°, ∵AC=AF, ∴∠ACF=∠AFC=75°, ∴∠CAF=30°, ∵∠EAF+∠BAC=180°, ∴∠EAB+2∠ABC+∠FAC=180°, ∴50°+2∠BAC+30°=180°, ∴∠BAC=50°. (2) 证明:证明:如图,延长AD至点H,使DH=AD,连接BH ∵AD是△ABC的中线, ∴BD=DC, 又∵DH=AD,∠BDH=∠ADC ∴△ADC≌△HDB(SAS), ∴BH=AC,∠BHD=∠DAC, ∴BH=AF, ∵∠BHD=∠DAC, ∴BH∥AC, ∴∠BAC+∠ABH=180°, 又∵∠EAF+∠BAC=180°, ∴∠ABH=∠EAF, 又∵AB=AE,BH=AF, ∴△AEF≌△BAH(SAS), ∴EF=AH=2AD, ∴EF=2AD; (3) 结论:∠GAF﹣∠CAF=60°. 理由:由(2)得,AD=EF,又点G为EF中点, ∴EG=AD, 由(2)△AEF≌△BAH, ∴∠AEG=∠BAD, 在△EAG和△ABD中, , ∴△EAG≌△ABD, ∴∠EAG=∠ABC=60°,AG=BD, ∴△AEB是等边三角形,AG=CD, ∴∠ABE=60°, ∴∠CBM=60°, 在△ACD和△FAG中, , ∴△ACD≌△FAG, ∴∠ACD=∠FAG, ∵AC=AF, ∴∠ACF=∠AFC, 在四边形ABCF中,∠ABC+∠BCF+∠CFA+∠BAF=360°, ∴60°+2∠BCF=360°, ∴∠BCF=150°, ∴∠BCA+∠ACF=150°, ∴∠GAF+(180°﹣∠CAF)=150°, ∴∠GAF﹣∠CAF=60°. 【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题. 4.(1)见解析;(2)⊥;(3)见解析 【分析】(1)根据垂直的定义可得∠ADC=∠E=90°,根据余角的性质可得∠ACD=∠BAE,然后根据AAS即可证得结论; (2)由于要得出、的位置关系,结 解析:(1)见解析;(2)⊥;(3)见解析 【分析】(1)根据垂直的定义可得∠ADC=∠E=90°,根据余角的性质可得∠ACD=∠BAE,然后根据AAS即可证得结论; (2)由于要得出、的位置关系,结合图形可猜想:⊥; (3)如图,作CP⊥AC于点C,延长FD交CP于点P,先证明△BAE≌△FCP,可得∠3=∠P,AB=CP,然后证明△ACD≌△PCD,可得∠4=∠P,进一步即可推出∠4+∠2=90°,问题得证. 【详解】解:(1)证明:∵,, ∴∠ADC=∠E=90°,∠DAC+∠ACD=90°, ∵, ∴∠DAC+∠BAE=90°, ∴∠ACD=∠BAE, 在△DAC和△EBA中, ∵∠ADC=∠E,∠ACD=∠BAE,AC=AB, ∴(AAS); (2)结合图形可得:⊥; 故答案为:⊥; (3)证明:如图,作CP⊥AC于点C,延长FD交CP于点P, ∵AF=CE, ∴AE=CF, ∵, ∴∠1=∠2, ∵∠BAE=∠FCP=90°, ∴△BAE≌△FCP, ∴∠3=∠P,AB=CP, ∵,, ∴∠ABC=∠ACB=45°, ∵∠PCP=90°,AB=CP, ∴∠FCD=45°,AC=PC, ∴∠ACB=∠PCD, ∵CD=CD, ∴△ACD≌△PCD, ∴∠4=∠P, ∵∠3=∠P, ∴∠3=∠4, ∵∠3+∠2=90°, ∴∠4+∠2=90°, ∴∠AGE=90°,即⊥. 【点睛】本题考查了等腰直角三角形的性质、全等三角形的判定和性质,正确添加辅助线、熟练掌握全等三角形的判定和性质是解题的关键. 5.(1)3,;(2)①见解析;②的坐标为(,) 【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可; (2)①连接AC,过点B作BN⊥BP,交CP的延长线于点N,利用SAS证明 解析:(1)3,;(2)①见解析;②的坐标为(,) 【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可; (2)①连接AC,过点B作BN⊥BP,交CP的延长线于点N,利用SAS证明△OPB≌△OCA,再证明△BNP为等腰直角三角形,利用AAS证明△ACD≌△BND,即可证明AD=DB; ②作出如图所示的辅助线,证明△BMP为等腰直角三角形,利用AAS证明△PBF≌△MPE,求得E(2n,n) ,M(3n−3,n),证明点M,E关于y轴对称,得到3n−3+2n=0,即可求解. 【详解】(1)∵, ∴, ∴,, 解得:,, 故答案为:3,; (2)①连接AC, ∵∠COP=∠AOB=90°, ∴∠COP-∠AOP =∠AOB-∠AOP, ∴, 在△OPB和△OCA中, , ∴△OPB≌△OCA(SAS), ∴AC=BP,∠OCA=∠OPB=90°, 过点B作BN⊥BP,交CP的延长线于点N, ∵∠COP=90°,OP=OC, ∴∠OCP=∠OPC=∠ACP=45°, ∵∠OPB=90°, ∴∠BPN=45°, ∴△BNP为等腰直角三角形, ∴∠BPN=∠N=45°, ∴BN=BP=AC, 在△ACD和△BND中, , ∴△ACD≌△BND(AAS), ∴AD=DB; ②∵∠AOB=90°,AO=OB, ∴△AOB为等腰直角三角形, ∴∠OBA=45°, ∵∠MBO=∠ABP, ∴∠MBO+∠OBP=∠ABP+∠OBP=∠OBA=45°, ∴∠MBP=45°, ∵OP⊥BP, ∴△BMP为等腰直角三角形, ∴MP=BP, 过点P作y轴的平行线EF,分别过M,B作ME⊥EF于E,BF⊥EF于F,EF交x轴于G,ME交y轴于H,连接OE, ∴∠MPE+∠EMP=∠MPE +∠FPB=90°, ∴∠EMP=∠FPB, 在△PBF和△MPE中, , ∴△PBF≌△MPE(AAS), ∴BF=EP,PF=ME, ∵P(2n,−n), ∴BF=EP=EH=2n,PG=EG=n,PF=ME=3−n, ∴MH=ME-EH=3−n−2n=3−3n, ∴E(2n,n) ,M(3n−3,n), ∴点P,E关于x轴对称, ∴OE=OP,∠OEP=∠OPE, 同理OM=OE,点M,E关于y轴对称, ∴3n−3+2n=0, 解得,即点M的坐标为(,). 【点睛】本题考查了坐标与图形、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用全等三角形的性质解决问题. 6.(1)C;(2)见解析;(3)或或 【分析】(1)作垂足为,证明,求出CM和OM的长,即可得到点C坐标; (2)延长相交于点,先证明,得BD=CF,再证明,得CE=EF,即可证明结论; (3) 解析:(1)C;(2)见解析;(3)或或 【分析】(1)作垂足为,证明,求出CM和OM的长,即可得到点C坐标; (2)延长相交于点,先证明,得BD=CF,再证明,得CE=EF,即可证明结论; (3)分情况讨论,画出对应的等腰直角三角形的图象,做辅助线构造全等三角形,求出点P坐标. 【详解】解:如图中,作垂足为, , ,, 在和中, , 点坐标; 如图,延长相交于点, , 在和中, , , , 在和中, , , ; (3)①如图,,,过点P作轴于点D, 在和中, , ∴, ∴,, ∴, ∴; ②如图,,,过点P作轴于点D, 在和中, , ∴, ∴,, ∴, ∴; ③如图,,,过点P作轴于点E,过点A作于点D, ∵,, ∴, 在和中, , ∴, 设,, ∵,, ∴,解得, ∴,, ∴; 综上:点P的坐标是或或. 【点睛】本题考查坐标和几何综合题,解题的关键是掌握作辅助线构造全等三角形的方法,利用全等三角形的性质求解点坐标,掌握数形结合的思想. 7.(1)2,4;(2)见解析,(4,0);(3)P(4,2)或(2,﹣2). 【分析】(1)将已知等式变形,利用乘方的非负性即可求出a值; (2)根据题意画出图形,由(1)得出OB的长,结合∠AP 解析:(1)2,4;(2)见解析,(4,0);(3)P(4,2)或(2,﹣2). 【分析】(1)将已知等式变形,利用乘方的非负性即可求出a值; (2)根据题意画出图形,由(1)得出OB的长,结合∠APB=45°,得出OP=OB,可得点B的坐标; (3)分当∠ABP=90°时和当∠BAP=90°时两种情况进行讨论,结合全等三角形的判定和性质即可求出点P坐标. 【详解】解:(1)∵a2+b2–4a–8b+20=0, ∴( a2–4a+4)+(b2–8b+16)=0, ∴( a–2)2+(b–4) 2=0 ∴a=2,b=4, 故答案为:2,4; (2)如图 1,由(1)知,b=4, ∴B(0,4), ∴OB=4, 点 P 在直线 AB 的右侧,且在 x 轴上, ∵∠APB=45°, ∴OP=OB=4, ∴P(4,0), 故答案为:(4,0); (3)存在.理由如下: 由(1)知 a=﹣2,b=4, ∴A(﹣2,0),B(0,4), ∴OA=2,OB=4, ∵△ABP 是直角三角形,且∠APB=45°, ∴只有∠ABP=90°或∠BAP=90°, Ⅰ、如图 2,当∠ABP=90°时, ∵∠APB=∠BAP=45°, ∴AB=PB , 过点 P 作 PC⊥OB 于 C, ∴∠BPC+∠CBP=90°, ∵∠CBP+∠ABO=90 °, ∴∠ABO=∠BPC, 在△AOB 和△BCP 中, , ∴△AOB≌△BCP(AAS), ∴PC=OB=4,BC=OA=2, ∴OC=OB﹣BC=2, ∴P(4,2),Ⅱ、如图3,当∠BAP=90°时, 过点 P'作 P'D⊥OA 于 D, 同Ⅰ的方法得,△ADP'≌△BOA, ∴DP'=OA=2,AD=OB=4, ∴OD=AD﹣OA=2, ∴P'(2,﹣2); 即:满足条件的点 P(4,2)或(2,﹣2); 【点睛】本题考查了非负数的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,难度不大,解题的关键是要根据直角三角形的性质进行分类讨论. 8.(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2) 【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案; (2) 解析:(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2) 【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案; (2)如图,过点F作FH⊥AO于点H,根据全等三角形的性质,通过证明,得AH=EO=2,FH=AO=4,从而得OH =2,即可得点F坐标;通过证明,推导得HD=OD=1,即可得到答案; (3)过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S,根据余角和等腰三角形的性质,通过证明等腰和等腰,推导得,再根据全等三角形的性质,通过证明,得等腰,再通过证明,得NS=EM=4,MS=OE=2,即可完成求解. 【详解】(1)∵, ∴. ∵, ∴, ∴, ∴, ∴,. (2)如图,过点F作FH⊥AO于点H ∵AF⊥AE ∴∠FHA=∠AOE=90°, ∵ ∴∠AFH=∠EAO 又∵AF=AE, 在和中 ∴ ∴AH=EO=2,FH=AO=4 ∴OH=AO-AH=2 ∴F(-2,4) ∵OA=BO, ∴FH=BO 在和中 ∴ ∴HD=OD ∵ ∴HD=OD=1 ∴D(-1,0) ∴D(-1,0),F(-2,4); (3)如图,过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S ∴ ∴, ∴ ∴ ∴ ∴等腰 ∴NQ=NO, ∵NG⊥PN, NS⊥EG ∴ ∴, ∴ ∵, ∴ ∵点E为线段OB的中点 ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴等腰 ∴NG=NP, ∵ ∴ ∴∠QNG=∠ONP 在和中 ∴ ∴∠NGQ=∠NPO,GQ=PO ∵, ∴PO=PB ∴∠POE=∠PBE=45° ∴∠NPO=90° ∴∠NGQ=90° ∴∠QGR=45°. 在和中 ∴. ∴QR=OE 在和中 ∴ ∴QM=OM. ∵NQ=NO, ∴NM⊥OQ ∵ ∴等腰 ∴ ∵ ∴ 在和中 ∴ ∴NS=EM=4,MS=OE=2 ∴N(-6,2). 【点睛】本题考查了直角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解. 9.(1)当M、N运动6秒时,点N追上点M;(2)①,△AMN是等边三角形;②当或时,△AMN是直角三角形;(3) 【详解】(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N的 解析:(1)当M、N运动6秒时,点N追上点M;(2)①,△AMN是等边三角形;②当或时,△AMN是直角三角形;(3) 【详解】(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N的运动路程比M的运动路程多6cm,列出方程求解即可; (2)①根据题意设点M、N运动t秒后,可得到等边三角形△AMN,然后表示出AM,AN的长,由于∠A等于60°,所以只要AM=AN三角形ANM就是等边三角形; ②分别就∠AMN=90°和∠ANM=90°列方程求解可得; (3)首先假设△AMN是等腰三角形,可证出△ACM≌△ABN,可得CM=BN,设出运动时间,表示出CM,NB,NM的长,列出方程,可解出未知数的值. 【解答】解:(1)设点M、N运动x秒后,M、N两点重合, x×1+6=2x, 解得:x=6, 即当M、N运动6秒时,点N追上点M; (2)①设点M、N运动t秒后,可得到等边三角形△AMN,如图1, AM=t,AN=6﹣2t, ∵AB=AC=BC=6cm, ∴∠A=60°,当AM=AN时,△AMN是等边三角形, ∴t=6﹣2t, 解得t=2, ∴点M、N运动2秒后,可得到等边三角形△AMN. ②当点N在AB上运动时,如图2, 若∠AMN=90°, ∵BN=2t,AM=t, ∴AN=6﹣2t, ∵∠A=60°, ∴2AM=AN,即2t=6﹣2t, 解得; 如图3,若∠ANM=90°, 由2AN=AM得2(6﹣2t)=t, 解得. 综上所述,当t为或时,△AMN是直角三角形; (3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形, 由(1)知6秒时M、N两点重合,恰好在C处, 如图4,假设△AMN是等腰三角形, ∴AN=AM, ∴∠AMN=∠ANM, ∴∠AMC=∠ANB, ∵AB=BC=AC, ∴△ACB是等边三角形, ∴∠C=∠B, 在△ACM和△ABN中, ∵∠AMC=∠ANB,∠C=∠B,AC=AB, ∴△ACM≌△ABN(AAS), ∴CM=BN, ∴t﹣6=18﹣2t, 解得t=8,符合题意. 所以假设成立,当M、N运动8秒时,能得到以MN为底的等腰三角形. 【点睛】本题是三角形综合题,主要考查了等边三角形的判定与性质,含30°角的直角三角形的性质,全等三角形的判定与性质,将动点问题转化为线段的长是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 002 初二 上学 压轴 强化 数学 质量 检测 试题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文