人教版中学七年级数学下册期末综合复习题(附答案).doc
《人教版中学七年级数学下册期末综合复习题(附答案).doc》由会员分享,可在线阅读,更多相关《人教版中学七年级数学下册期末综合复习题(附答案).doc(25页珍藏版)》请在咨信网上搜索。
人教版中学七年级数学下册期末综合复习题(附答案) 一、选择题 1.如图,直线交的边于点,则与是( ) A.同位角 B.同旁内角 C.对顶角 D.内错角 2.下列汽车商标图案中,可以由一个“基本图案”通过连续平移得到的是( ) A. B. C. D. 3.点(﹣4,2)所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列命题中,假命题的数量为( ) ①如果两个角的和等于平角,那么这两个角互为补角; ②内错角相等; ③两个锐角的和是锐角; ④如果直线a∥b,b∥c,那么a∥c. A.3 B.2 C.1 D.0 5.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB,CD,若,若,则的度数是( ) A. B. C. D. 6.下列说法不正确的是( ) A. B. C.的平方根是 D.的立方根是 7.如图,中,平分,于点,,,则的度数为( ) A.134° B.124° C.114° D.104° 8.如图,在平面直角坐标系上有点,点第一次向左跳动至,第二次向右跳动至,第三次向左跳动至,第四次向右跳动至…依照此规律跳动下去,点第124次跳动至的坐标为( ) A. B. C. D. 九、填空题 9.的算术平方根是__________. 十、填空题 10.点P(﹣2,3)关于x轴的对称点的坐标是_____. 十一、填空题 11.如图,BD、CE为△ABC的两条角平分线,则图中∠1、∠2、∠A之间的关系为___________. 十二、填空题 12.如图,已知AB∥CD,如果∠1=100°,∠2=120°,那么∠3=_____度. 十三、填空题 13.如图,将一张长方形纸片沿折叠后,点,分别落在,的位置,若,则的度数为______. 十四、填空题 14.按下面的程序计算: 若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可以是________. 十五、填空题 15.在平面直角坐标系中,点A(1,4),C(1,﹣2),E(a,a),D(4﹣b,2﹣b),其中a+b=2,若DE=BC,∠ACB=90°,则点B的坐标是___. 十六、填空题 16.在平面直角坐标系中,点经过某种变换后得到点,我们把点叫做点的终结点已知点的终结点为点的终结点为,点的终结点为,这样依次得到,若点的坐标为,则点的坐标为____ 十七、解答题 17.计算. (1); (2). 十八、解答题 18.求满足下列各式x的值 (1)2x2﹣8=0; (2)(x﹣1)3=﹣4. 十九、解答题 19.补全下列推理过程: 如图,已知EF//AD,∠1=∠2,∠BAC=70°,求∠AGD. 解:∵EF//AD ∴∠2= ( ) 又∵∠1=∠2( ) ∴∠1=∠3( ) ∴AB// ( ) ∴∠BAC+ =180°( ) ∵∠BAC=70° ∴∠AGD= . 二十、解答题 20.如图,三角形在平面直角坐标系中. (1)请写出三角形各点的坐标; (2)求出三角形的面积; (3)若把三角形向上平移2个单位,再向左平移1个单位得到三角形,在图中画出平移后三角形. 二十一、解答题 21.阅读下面的文字,解答问题: 大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的.因为的整数部分是,将这个数减去其整数部分,差就是小数部分. 根据以上内容,请解答: 已知,其中是整数,,求的值. 二十二、解答题 22.有一块面积为100cm2的正方形纸片. (1)该正方形纸片的边长为 cm(直接写出结果); (2)小丽想沿着该纸片边的方向裁剪出一块面积为90cm2的长方形纸片,使它的长宽之比为4:3.小丽能用这块纸片裁剪出符合要求的纸片吗? 二十三、解答题 23.如图1,已AB∥CD,∠C=∠A. (1)求证:AD∥BC; (2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究∠BAE,∠CDE,∠E之间的数量关系,并证明. (3)如图3,若∠C=90°,且点E在线段BC上,DF平分∠EDC,射线DF在∠EDC的内部,且交BC于点M,交AE延长线于点F,∠AED+∠AEC=180°, ①直接写出∠AED与∠FDC的数量关系: . ②点P在射线DA上,且满足∠DEP=2∠F,∠DEA﹣∠PEA=∠DEB,补全图形后,求∠EPD的度数 二十四、解答题 24.如图1,E点在BC上,∠A=∠D,AB∥CD. (1)直接写出∠ACB和∠BED的数量关系 ; (2)如图2,BG平分∠ABE,与∠CDE的邻补角∠EDF的平分线交于H点.若∠E比∠H大60°,求∠E; (3)保持(2)中所求的∠E不变,如图3,BM平分∠ABE的邻补角∠EBK,DN平分∠CDE,作BP∥DN,则∠PBM的度数是否改变?若不变,请求值;若改变,请说理由. 二十五、解答题 25.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数. 小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°. 问题迁移: (1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由; (2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系. 【参考答案】 一、选择题 1.A 解析:A 【分析】 根据对顶角,同位角、内错角、同旁内角的概念解答即可. 【详解】 解:∵直线AB交∠DCE的边CE于点F, ∴∠1与∠2是直线AB、CD被直线CE所截得到的同位角. 故选:A. 【点睛】 此题主要考查了对顶角,同位角、内错角、同旁内角.解题的关键是掌握对顶角,同位角、内错角、同旁内角的概念. 2.B 【分析】 根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解. 【详解】 解:A、可以由一个“基本图案”旋转得到,故本选项错误; B、可以由一个“基本图案”平移得到,故把本选项正 解析:B 【分析】 根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解. 【详解】 解:A、可以由一个“基本图案”旋转得到,故本选项错误; B、可以由一个“基本图案”平移得到,故把本选项正确; C、是轴对称图形,不是基本图案的组合图形,故本选项错误; D、是轴对称图形,不是基本图案的组合图形,故本选项错误. 故选:B. 【点睛】 本题考查了生活中的平移现象,仔细观察各选项图形是解题的关键. 3.B 【分析】 根据第二象限的点的横坐标是负数,纵坐标是正数解答. 【详解】 解:点(-4,2)所在的象限是第二象限. 故选:B. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B 【分析】 根据平角和补角的性质判断①;内错角不一定相等判断②;根据锐角的定义:小于90°的角,判断③;根据平行线的性质判断④. 【详解】 根据平角和补角的性质可以判断①是真命题; 两直线平行内错角相等,故②是假命题; 两锐角的和可能是钝角也可能是直角,故③是假命题; 平行于同一条直线的两条直线平行,故④是真命题, 因此假命题有两个②和③, 故选:B. 【点睛】 本题考查了平角、补角、内错角、平行线和锐角,熟练掌握相关定义和性质是解决本题的关键. 5.D 【分析】 由折叠的性质可知∠1=∠BAG,2∠BDC+∠2=180°,根据BE∥AG,得到∠CFB=∠CAG=2∠1,从而根据平行线的性质得到∠CDB=2∠1,则∠2=180°-4∠1. 【详解】 解:由题意得:AG∥BE∥CD,CF∥BD, ∴∠CFB=∠CAG,∠CFB+∠DBF=180°,∠DBF+∠CDB=180° ∴∠CFB=∠CDB ∴∠CAG=∠CDB 由折叠的性质得∠1=∠BAG,2∠BDC+∠2=180° ∴∠CAG=∠CDB=∠1+∠BAG=2α ∴∠2=180°-2∠BDC=180°-4α 故选D. 【点睛】 本题主要考查了平行线的性质与折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解. 6.D 【分析】 利用平方根、算术平方根及立方根的定义分别判断后即可确定正确的选项. 【详解】 解:A、,正确,不符合题意; B、,正确,不符合题意; C、0.04的平方根是±0.2,正确,不符合题意; D、9的立方根是=3,故错误,符合题意; 故选:D. 【点睛】 本题考查了平方根、算术平方根及立方根的定义,属于基础性定义,比较简单. 7.B 【分析】 已知AE平分∠BAC,ED∥AC,根据两直线平行,同旁内角互补可知∠DEA的度数,再由周角为360°,求得∠BED的度数即可. 【详解】 解:∵AE平分∠BAC, ∴∠BAE=∠CAE=34°, ∵ED∥AC, ∴∠CAE+∠AED=180°, ∴∠DEA=180°-34°=146°, ∵BE⊥AE, ∴∠AEB=90°, ∵∠AEB+∠BED+∠AED=360°, ∴∠BED=360°-146°-90°=124°, 故选:B. 【点睛】 本题考查了平行线的性质和周角的定义,熟记两直线平行,同旁内角互补是解题的关键. 8.A 【分析】 根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可. 【详解】 解:观察发现,第2次跳动至点的坐标是(2,1), 第4次跳动至点的坐标 解析:A 【分析】 根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可. 【详解】 解:观察发现,第2次跳动至点的坐标是(2,1), 第4次跳动至点的坐标是(3,2), 第6次跳动至点的坐标是(4,3), 第8次跳动至点的坐标是(5,4), … 第2n次跳动至点的坐标是(n+1,n), ∴第124次跳动至点的坐标是(63,62). 故选:A. 【点睛】 本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键. 九、填空题 9.【分析】 直接利用算术平方根的定义得出答案. 【详解】 解:, 的算术平方根是:. 故答案为:. 【点睛】 此题主要考查了算术平方根,正确掌握相关定义是解题关键. 解析: 【分析】 直接利用算术平方根的定义得出答案. 【详解】 解:, 的算术平方根是:. 故答案为:. 【点睛】 此题主要考查了算术平方根,正确掌握相关定义是解题关键. 十、填空题 10.(﹣2,﹣3) 【分析】 两点关于x轴对称,那么横坐标不变,纵坐标互为相反数. 【详解】 点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数, ∴对称点的坐标是(﹣2,﹣3). 故答案为 解析:(﹣2,﹣3) 【分析】 两点关于x轴对称,那么横坐标不变,纵坐标互为相反数. 【详解】 点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数, ∴对称点的坐标是(﹣2,﹣3). 故答案为(﹣2,﹣3). 【点睛】 本题考查关于x轴对称的点的坐标的特点,可记住要点或画图得到. 十一、填空题 11.∠1+∠2-∠A=90° 【分析】 先根据三角形的外角等于与它不相邻的两个内角的和,写出∠1+∠2与∠A的关系,再根据三角形内角和等于180°,求出∠1+∠2与∠A的度数关系. 【详解】 ∵BD、C 解析:∠1+∠2-∠A=90° 【分析】 先根据三角形的外角等于与它不相邻的两个内角的和,写出∠1+∠2与∠A的关系,再根据三角形内角和等于180°,求出∠1+∠2与∠A的度数关系. 【详解】 ∵BD、CE为△ABC的两条角平分线, ∴∠ABD=∠ABC,∠ACE=∠ACB, ∵∠1=∠ACE+∠A,∠2=∠ABD+∠A ∴∠1+∠2=∠ACE+∠A+∠ABD+∠A =∠ABC+∠ACB+∠A+∠A =(∠ABC+∠ACB+∠A)+∠A =90°+∠A 故答案为∠1+∠2-∠A=90°. 【点睛】 考查了三角形的内角和等于180°、外角与内角关系及角平分线的性质,是基础题.三角形的外角与内角间的关系:三角形的外角与它相邻的内角互补,等于与它不相邻的两个内角的和. 十二、填空题 12.40 【分析】 过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得到,,即可确定出的度数. 【详解】 解:如图:过作平行于, , , , ,即, . 故答案为:40. 【 解析:40 【分析】 过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得到,,即可确定出的度数. 【详解】 解:如图:过作平行于, , , , ,即, . 故答案为:40. 【点睛】 此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键. 十三、填空题 13.50° 【分析】 先根据平行线的性质得出∠DEF的度数,再根据翻折变换的性质得出∠D′EF的度数,根据平角的定义即可得出结论. 【详解】 解:∵AD∥BC,∠EFB=65°, ∴∠DEF=65°, 解析:50° 【分析】 先根据平行线的性质得出∠DEF的度数,再根据翻折变换的性质得出∠D′EF的度数,根据平角的定义即可得出结论. 【详解】 解:∵AD∥BC,∠EFB=65°, ∴∠DEF=65°, 又∵∠DEF=∠D′EF, ∴∠D′EF=65°, ∴∠AED′=50°. 故答案是:50°. 【点睛】 本题考查的是折叠的性质以及平行线的性质,用到的知识点为:两直线平行,内错角相等. 十四、填空题 14.131或26或5. 【解析】 试题解析:由题意得,5n+1=656, 解得n=131, 5n+1=131, 解得n=26, 5n+1=26, 解得n=5. 解析:131或26或5. 【解析】 试题解析:由题意得,5n+1=656, 解得n=131, 5n+1=131, 解得n=26, 5n+1=26, 解得n=5. 十五、填空题 15.或 【分析】 根据,求得的坐标,进而求得的长,根据DE=BC,∠ACB=90°,分类讨论即可确定的坐标. 【详解】 , 的纵坐标相等, 则到轴的距离相等,即轴 则 DE=BC, A(1,4 解析:或 【分析】 根据,求得的坐标,进而求得的长,根据DE=BC,∠ACB=90°,分类讨论即可确定的坐标. 【详解】 , 的纵坐标相等, 则到轴的距离相等,即轴 则 DE=BC, A(1,4),C(1,﹣2), 的横坐标相等,则到轴的距离相等,即轴 则轴, 当在的左侧时,, 当在的右侧时,, 的坐标为或. 故答案为:或. 【点睛】 本题考查了坐标与图形,点的平移,平行线的性质与判定,点到坐标轴的距离,根据题意求得的长是解题的关键. 十六、填空题 16.【分析】 利用点P(x,y)的终结点的定义分别写出点P2的坐标为(1,4),点P3的坐标为(−3,3),点P4的坐标为(−2,−1),点P5的坐标为(2,0),…,从而得到每4次变换一个循环,然后 解析: 【分析】 利用点P(x,y)的终结点的定义分别写出点P2的坐标为(1,4),点P3的坐标为(−3,3),点P4的坐标为(−2,−1),点P5的坐标为(2,0),…,从而得到每4次变换一个循环,然后利用2021=4×505+1可判断点P2021的坐标与点P1的坐标相同. 【详解】 解:根据题意得点P1的坐标为(2,0),则点P2的坐标为(1,4),点P3的坐标为(−3,3),点P4的坐标为(−2,-1),点P5的坐标为(2,0),…, 而2021=4×505+1, 所以点P2021的坐标与点P1的坐标相同,为(2,0), 故答案为:. 【点睛】 本题考查了坐标的变化规律探索,找出前5个点的坐标,找出变化规律,是解题的关键. 十七、解答题 17.(1)3;(2) 【分析】 (1)根据有理数加减混合运算法则求解即可; (2)根据平方根与立方根的定义先化简,然后合并求解即可. 【详解】 解:(1)原式 (2)原式 【点睛】 本题考查有理数 解析:(1)3;(2) 【分析】 (1)根据有理数加减混合运算法则求解即可; (2)根据平方根与立方根的定义先化简,然后合并求解即可. 【详解】 解:(1)原式 (2)原式 【点睛】 本题考查有理数的加减混合运算,以及实数的混合运算等,掌握基本的运算法则,注意运算顺序是解题关键. 十八、解答题 18.(1)或者;(2) 【分析】 (1)根据求一个数的平方根解方程 (2)根据求一个数的立方根解方程 【详解】 (1)2x2﹣8=0, , , 解得或者; (2)(x﹣1)3=﹣4, , , 解得. 【 解析:(1)或者;(2) 【分析】 (1)根据求一个数的平方根解方程 (2)根据求一个数的立方根解方程 【详解】 (1)2x2﹣8=0, , , 解得或者; (2)(x﹣1)3=﹣4, , , 解得. 【点睛】 本题考查了求一个数的平方根和立方根,掌握平方根和立方根的概念是解题的关键. 十九、解答题 19.∠3;两直线平行,同位角相等;已知;等量代换;DG;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;110° 【分析】 根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得 解析:∠3;两直线平行,同位角相等;已知;等量代换;DG;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;110° 【分析】 根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得出AB//DG,根据平行线的性质推出∠BAC+∠AGD=180°,代入求出即可求得∠AGD. 【详解】 解:∵EF//AD, ∴∠2=∠3(两直线平行,同位角相等), 又∵∠1=∠2(已知), ∴∠1=∠3(等量代换), ∴AB//DG,(内错角相等,两直线平行) ∴∠BAC+∠AGD=180°,(两直线平行,同旁内角互补) ∵∠BAC=70°, ∴∠AGD=110° 故答案为:∠3,两直线平行,同位角相等,已知,等量代换,DG,内错角相等,两直线平行,∠AGD,两直线平行,同旁内角互补;110°. 【点睛】 本题考查了平行线的性质和判定的应用,能正确根据平行线的性质和判定定理进行推理是解此题的关键. 二十、解答题 20.(1),,;(2)7;(3)见解析 【分析】 (1)根据平面直角坐标系中点的位置,即可求解; (2)三角形的面积为长方形面积减去三个直角三角形的面积,即可求解; (3)根据点的平移规则,求得三点坐标 解析:(1),,;(2)7;(3)见解析 【分析】 (1)根据平面直角坐标系中点的位置,即可求解; (2)三角形的面积为长方形面积减去三个直角三角形的面积,即可求解; (3)根据点的平移规则,求得三点坐标,连接对应线段即可. 【详解】 解:(1)根据平面直角坐标系中点的位置,可得: ,,; (2)三角形的面积 ; (3)三角形向上平移2个单位,再向左平移1个单位得到三角形 可得,,,连接,三角形如图所示: 【点睛】 此题考查了平面直角坐标系中点的坐标以及平移,熟练掌握平面直角坐标系中点的坐标以及平移规则是解题的关键. 二十一、解答题 21.同意; 【分析】 找出的整数部分与小数部分.然后再来求. 【详解】 解:同意小明的表示方法. 无理数的整数部分是, 即, 无理数的小数部分是, 即, , 【点睛】 本题主要考查了无理数的大小.解题 解析:同意; 【分析】 找出的整数部分与小数部分.然后再来求. 【详解】 解:同意小明的表示方法. 无理数的整数部分是, 即, 无理数的小数部分是, 即, , 【点睛】 本题主要考查了无理数的大小.解题关键是确定无理数的整数部分即可解决问题. 二十二、解答题 22.(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片. 【分析】 (1)根据算术平方根的定义直接得出; (2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案. 【详解】 解:(1)根据算 解析:(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片. 【分析】 (1)根据算术平方根的定义直接得出; (2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案. 【详解】 解:(1)根据算术平方根定义可得,该正方形纸片的边长为10cm; 故答案为:10; (2)∵长方形纸片的长宽之比为4:3, ∴设长方形纸片的长为4xcm,则宽为3xcm, 则4x•3x=90, ∴12x2=90, ∴x2=, 解得:x=或x=-(负值不符合题意,舍去), ∴长方形纸片的长为2cm, ∵5<<6, ∴10<2, ∴小丽不能用这块纸片裁出符合要求的纸片. 【点睛】 本题考查了算术平方根.解题的关键是掌握算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.也考查了估算无理数的大小. 二十三、解答题 23.(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50° 【分析】 (1)根据平行线的性质及判定可得结论; (2)过点E作EF∥AB,根 解析:(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50° 【分析】 (1)根据平行线的性质及判定可得结论; (2)过点E作EF∥AB,根据平行线的性质得AB∥CD∥EF,然后由两直线平行内错角相等可得结论; (3)①根据∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可导出角的关系; ②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-∠PEA=∠DEB,求出∠AED=50°,即可得出∠EPD的度数. 【详解】 解:(1)证明:AB∥CD, ∴∠A+∠D=180°, ∵∠C=∠A, ∴∠C+∠D=180°, ∴AD∥BC; (2)∠BAE+∠CDE=∠AED,理由如下: 如图2,过点E作EF∥AB, ∵AB∥CD ∴AB∥CD∥EF ∴∠BAE=∠AEF,∠CDE=∠DEF 即∠FEA+∠FED=∠CDE+∠BAE ∴∠BAE+∠CDE=∠AED; (3)①∠AED-∠FDC=45°; ∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°, ∴∠AEC=∠DEC+∠AEB, ∴∠AED=∠AEB, ∵DF平分∠EDC ∠DEC=2∠FDC ∴∠DEC=90°-2∠FDC, ∴2∠AED+(90°-2∠FDC)=180°, ∴∠AED-∠FDC=45°, 故答案为:∠AED-∠FDC=45°; ②如图3, ∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°, ∴∠F=45°, ∴∠DEP=2∠F=90°, ∵∠DEA-∠PEA=∠DEB=∠DEA, ∴∠PEA=∠AED, ∴∠DEP=∠PEA+∠AED=∠AED=90°, ∴∠AED=70°, ∵∠AED+∠AEC=180°, ∴∠DEC+2∠AED=180°, ∴∠DEC=40°, ∵AD∥BC, ∴∠ADE=∠DEC=40°, 在△PDE中,∠EPD=180°-∠DEP-∠AED=50°, 即∠EPD=50°. 【点睛】 本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键. 二十四、解答题 24.(1)∠ACB+∠BED=180°;(2)100°;(3)40° 【分析】 (1)如图1,延长DE交AB于点F,根据ABCD可得∠DFB=∠D,则∠DFB=∠A,可得ACDF,根据平行线的性质得∠A 解析:(1)∠ACB+∠BED=180°;(2)100°;(3)40° 【分析】 (1)如图1,延长DE交AB于点F,根据ABCD可得∠DFB=∠D,则∠DFB=∠A,可得ACDF,根据平行线的性质得∠ACB+∠CEF=180°,由对顶角相等可得结论; (2)如图2,作EMCD,HNCD,根据ABCD,可得ABEMHNCD,根据平行线的性质得角之间的关系,再根据∠DEB比∠DHB大60°,列出等式即可求∠DEB的度数; (3)如图3,过点E作ESCD,设直线DF和直线BP相交于点G,根据平行线的性质和角平分线定义可求∠PBM的度数. 【详解】 解:(1)如图1,延长交于点, , , , , , , , 故答案为:; (2)如图2,作,, , , ,, 平分, , , , , , , 平分, , , , , 设, , 比大, , , 解得. 的度数为; (3)的度数不变,理由如下: 如图3,过点作,设直线和直线相交于点, 平分,平分, , , ,, , , , , 由(2)可知:, , , , , , . 【点睛】 本题考查了平行线的性质,解决本题的关键是掌握平行线的性质. 二十五、解答题 25.(1),理由见解析; (2)当点P在B、O两点之间时,; 当点P在射线AM上时,. 【分析】 (1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C 解析:(1),理由见解析; (2)当点P在B、O两点之间时,; 当点P在射线AM上时,. 【分析】 (1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案; (2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论. 【详解】 解:(1)∠CPD=∠α+∠β,理由如下: 如图,过P作PE∥AD交CD于E. ∵AD∥BC, ∴AD∥PE∥BC, ∴∠α=∠DPE,∠β=∠CPE, ∴∠CPD=∠DPE+∠CPE=∠α+∠β. (2)当点P在A、M两点之间时,∠CPD=∠β-∠α. 理由:如图,过P作PE∥AD交CD于E. ∵AD∥BC, ∴AD∥PE∥BC, ∴∠α=∠DPE,∠β=∠CPE, ∴∠CPD=∠CPE-∠DPE=∠β-∠α; 当点P在B、O两点之间时,∠CPD=∠α-∠β. 理由:如图,过P作PE∥AD交CD于E. ∵AD∥BC, ∴AD∥PE∥BC, ∴∠α=∠DPE,∠β=∠CPE, ∴∠CPD=∠DPE-∠CPE=∠α-∠β. 【点睛】 本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 中学 七年 级数 下册 期末 综合 复习题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文