人教中学七年级下册数学期末综合复习试卷含答案.doc
《人教中学七年级下册数学期末综合复习试卷含答案.doc》由会员分享,可在线阅读,更多相关《人教中学七年级下册数学期末综合复习试卷含答案.doc(25页珍藏版)》请在咨信网上搜索。
人教中学七年级下册数学期末综合复习试卷含答案 一、选择题 1.的平方根是() A.7 B.﹣7 C. D. 2.下列生活现象中,属于平移的是( ). A.钟摆的摆动 B.拉开抽屉 C.足球在草地上滚动 D.投影片的文字经投影转换到屏幕上 3.在平面直角坐标系中,平行于坐标轴的线段,若点坐标是,则点不在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等;⑤过一点有且只有一条直线与已知直线垂直.其中真命题的个数是( ) A.1个 B.2个 C.3个 D.4个 5.如图,直线,三角板的直角顶点在直线上,已知,则等于( ). A.25° B.55° C.65° D.75° 6.下列说法错误的是( ) A.3的平方根是 B.﹣1的立方根是﹣1 C.0.1是0.01的一个平方根 D.算术平方根是本身的数只有0和1 7.如图,直线a∥b,直角三角板ABC的直角顶点C在直线b上,若∠1=54°,则∠2的度数为( ) A.36° B.44° C.46° D.54° 8.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是( ) A.(﹣1,0) B.(0,2) C.(﹣1,﹣2) D.(0,1) 九、填空题 9.如果一个正方形的面积为3,则这个正方形的边长是 _____________. 十、填空题 10.已知点与点关于轴对称,那么________. 十一、填空题 11.如图,BE是△ABC的角平分线,AD是△ABC的高,∠ABC=60°,则 ∠AOE=_____. 十二、填空题 12.如图,直线m与∠AOB的一边射线OB相交,∠3=120°,向上平移直线m得到直线n,与∠AOB的另一边射线OA相交,则∠2-∠1=_______º. 十三、填空题 13.如图,将一条对边互相平行的长方形纸带进行两次折叠,折痕分别为、,若,且,则_____. 十四、填空题 14.将按下列方式排列,若规定表示第排从左向右第个数,则(20,9)表示的数的相反数是___ 十五、填空题 15.如果点P(x,y)的坐标满足x+y=xy,那么称点P为“美丽点”,若某个“美丽点”P到y轴的距离为2,则点P的坐标为___. 十六、填空题 16.如图,已知A1(1,2),A2(2,2),A3(3,0),A4(4,﹣2),A5(5,﹣2),A6(6,0),…,按这样的规律,则点A2021的坐标为 ____________. 十七、解答题 17.(1)已知,求x的值; (2)计算:. 十八、解答题 18.求下列各式中x的值: (1)9x2-25=0; (2)(x+3)3+27=0. 十九、解答题 19.请把以下证明过程补充完整,并在下面的括号内填上推理理由: 已知:如图,∠1=∠2,∠A=∠D. 求证:∠B=∠C. 证明:∵∠1=∠2,(已知) 又:∵∠1=∠3,( ) ∴∠2=____________(等量代换) (同位角相等,两直线平行) ∴∠A=∠BFD( ) ∵∠A=∠D(已知) ∴∠D=_____________(等量代换) ∴____________∥CD( ) ∴∠B=∠C( ) 二十、解答题 20.如图,三角形的顶点都在格点上,将三角形向右平移5个单位长度,再向上平移3个单位长度请回答下列问题: (1)平移后的三个顶点坐标分别为:______,______,______; (2)画出平移后三角形; (3)求三角形的面积. 二十一、解答题 21.一个正数的两个平方根为和,是的立方根,的小数部分是,求的平方根. 二十二、解答题 22.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1). (1)阅读理解:图1中大正方形的边长为________,图2中点A表示的数为________; (2)迁移应用: 请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形. ①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图. ②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 的点,并比较它们的大小. 二十三、解答题 23.如图1,已知直线m∥n,AB 是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q.我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB. (1)如图1,若∠OPQ=82°,求∠OPA的度数; (2)如图2,若∠AOP=43°,∠BQP=49°,求∠OPA的度数; (3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为 O→P→Q→R→O→P→…试判断∠OPQ和∠ORQ的数量关系,并说明理由. 二十四、解答题 24.如图所示,已知,点P是射线AM上一动点(与点A不重合),BC、BD分别平分和,分别交射线AM于点C、D,且 (1)求的度数. (2)当点P运动时,与之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律. (3)当点P运动到使时,求的度数. 二十五、解答题 25.已知,,点为射线上一点. (1)如图1,写出、、之间的数量关系并证明; (2)如图2,当点在延长线上时,求证:; (3)如图3,平分,交于点,交于点,且:,,,求的度数. 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据一个正数有两个平方根,它们互为相反数解答即可. 【详解】 ,7的平方根是, 的平方根是. 故选:C. 【点睛】 本题考查了平方根的概念,掌握一个正数有两个平方根,它们互为相反数;0的平方根是0,解题关键是先求出49的算术平方根. 2.B 【分析】 根据平移的定义,对选项进行分析,排除错误答案. 【详解】 A选项:为旋转,故A错误; C选项:滚动,故C错误; D选项:缩放,投影,故D错误. 只有B选项为平移. 故选:B. 【点睛】 解析:B 【分析】 根据平移的定义,对选项进行分析,排除错误答案. 【详解】 A选项:为旋转,故A错误; C选项:滚动,故C错误; D选项:缩放,投影,故D错误. 只有B选项为平移. 故选:B. 【点睛】 本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状大小和方向,注意平移是沿着一条直线方向移动,熟练运用平移的性质是解答本题的关键. 3.D 【分析】 设点 ,分轴和轴,两种情况讨论,即可求解. 【详解】 解:设点 , 若轴,则点P、Q的纵坐标相等, ∵线段,若点坐标是, ∴ , , 解得: 或 , ∴ 或 ; 若轴,则点P、Q的横坐标相等, ∵线段,若点坐标是, ∴ , , 解得: 或 , ∴ 或 , ∴点 或或 或 , ∴点不在第四象限. 故选:D. 【点睛】 本题主要考查了坐标与图形,线段与坐标轴平行时点的坐标特征,分轴和轴,两种情况讨论是解题的关键. 4.B 【分析】 根据几何初步知识对命题逐个判断即可. 【详解】 解:①对顶角相等,为真命题; ②内错角相等,只有两直线平行时,内错角才相等,此为假命题; ③平行于同一条直线的两条直线互相平行,为真命题; ④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或者互补,此为假命题; ⑤过直线外一点有且只有一条直线与已知直线垂直,为假命题; ①③命题正确. 故选:B. 【点睛】 本题主要考查了命题的判定,熟练掌握平行线、对顶角等几何初步知识是解答本题的关键. 5.C 【分析】 利用平行线的性质,可证得∠2=∠3,利用已知可证得∠1+∠3=90°,求出∠3的度数,进而求出∠2的度数. 【详解】 解:如图 ∵a//b ∴∠2=∠3, ∵∠1+∠3=180°-90°=90° ∴∠3=90°-∠1=90°-25°=65° ∴∠2=65°. 故选C. 【点睛】 本题主要考查了平行线的性质,灵活运用“两直线平行、同位角相等”是解答本题的关键. 6.A 【分析】 根据平方根、立方根、算术平方根的概念进行判断即可. 【详解】 解:A、3的平方根是±,原说法错误,故此选项符合题意; B、﹣1的立方根是﹣1,原说法正确,故此选项不符合题意; C、0.1是0.01的一个平方根,原说法正确,故此选项不符合题意; D、算术平方根是本身的数只有0和1,原说法正确,故此选项不符合题意. 故选:A. 【点睛】 本题考查了平方根、立方根、算术平方根的概念,掌握平方根、立方根、算术平方根的概念是解题的关键. 7.A 【分析】 根据直角三角形可求出∠3的度数,再根据平行线的性质∠2=∠3即可得出答案. 【详解】 解:如图所示: ∵直角三角形ABC,∠C=90°,∠1=54°, ∴∠3=90°-∠1=36°, ∵a∥b, ∴∠2=∠3=36°. 故选:A. 【点睛】 本题考查了平行线的性质,熟练掌握平行线的性质,求出∠3的度数是解题的关键. 8.D 【分析】 根据题意可得,从A→B→C→D→A一圈的长度为2(AB+BC)=10,据此分析即可得细线另一端在绕四边形第202圈的第1个单位长度的位置,从而求得细线另一端所在位置的点的坐标. 【详解 解析:D 【分析】 根据题意可得,从A→B→C→D→A一圈的长度为2(AB+BC)=10,据此分析即可得细线另一端在绕四边形第202圈的第1个单位长度的位置,从而求得细线另一端所在位置的点的坐标. 【详解】 解:∵A点坐标为(1,1),B点坐标为(﹣1,1),C点坐标为(﹣1,﹣2), ∴AB=1﹣(﹣1)=2,BC=2﹣(﹣1)=3, ∴从A→B→C→D→A一圈的长度为2(AB+BC)=10. 2021÷10=202…1, ∴细线另一端在绕四边形第202圈的第1个单位长度的位置, 即细线另一端所在位置的点的坐标是(0,1). 故选:D. 【点睛】 本题考查了坐标规律探索,找到规律是解题的关键. 九、填空题 9.【分析】 设这个正方形的边长为x(x>0),由题意得x2=3,根据算术平方根的定义解决此题. 【详解】 解:设这个正方形的边长为x(x>0). 由题意得:x2=3. ∴x=. 故答案为:. 【点睛 解析: 【分析】 设这个正方形的边长为x(x>0),由题意得x2=3,根据算术平方根的定义解决此题. 【详解】 解:设这个正方形的边长为x(x>0). 由题意得:x2=3. ∴x=. 故答案为:. 【点睛】 本题主要考查正方形的面积以及算术平方根,熟练掌握算术平方根的定义是解决本题的关键. 十、填空题 10.0; 【分析】 平面直角坐标系中任意一点,关于轴的对称点的坐标是,依此列出关于的方程求解即可. 【详解】 解:根据对称的性质,得, 解得. 故答案为:0. 【点睛】 考查了关于轴、轴对称的点的坐标, 解析:0; 【分析】 平面直角坐标系中任意一点,关于轴的对称点的坐标是,依此列出关于的方程求解即可. 【详解】 解:根据对称的性质,得, 解得. 故答案为:0. 【点睛】 考查了关于轴、轴对称的点的坐标,这一类题目是需要识记的基础题,解决的关键是对知识点的正确记忆. 十一、填空题 11.60° 【分析】 先根据角平分线的定义求出∠DOB的度数,再由三角形外角的性质求出∠BOD的度数,由对顶角相等即可得出结论. 【详解】 ∵BE是△ABC的角平分线,∠ABC=60°,∴∠DOB=∠A 解析:60° 【分析】 先根据角平分线的定义求出∠DOB的度数,再由三角形外角的性质求出∠BOD的度数,由对顶角相等即可得出结论. 【详解】 ∵BE是△ABC的角平分线,∠ABC=60°,∴∠DOB=∠ABC=×60°=30°,∵AD是△ABC的高,∴∠ADC=90°,∵∠ADC是△OBD的外角,∴∠BOD=∠ADC-∠OBD=90°-30°=60°,∴∠AOE=∠BOD=60°,故答案为60°. 【点睛】 本题考查的是三角形外角的性质,即三角形的一个外角等于和它不相邻的两个内角的和. 十二、填空题 12.60 【分析】 延长BO交直线n于点C,由平行线的性质得∠ACB=∠1,由邻补角得∠AOC=60°,再由三角形外角的性质可得结论. 【详解】 解:延长BO交直线n于点C,如图, ∵直线m向上平移直 解析:60 【分析】 延长BO交直线n于点C,由平行线的性质得∠ACB=∠1,由邻补角得∠AOC=60°,再由三角形外角的性质可得结论. 【详解】 解:延长BO交直线n于点C,如图, ∵直线m向上平移直线m得到直线n, ∴m∥n, ∴∠ACB=∠1, ∵∠3=120°, ∴∠AOC=60° ∵∠2=∠ACO+∠AOC=∠1+60°, ∴∠2-∠1=60°. 故答案为60. 【点睛】 本题考查了平移的性质,平行线的性质,以及三角形外角的性质,作辅助线构造三角形是解答此题的关键. 十三、填空题 13.68° 【分析】 利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°. 【详解】 解:如图,延长BC到点F, ∵纸带对边互相平行,∠1=56°, 解析:68° 【分析】 利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°. 【详解】 解:如图,延长BC到点F, ∵纸带对边互相平行,∠1=56°, ∴∠4=∠3=∠1=56°, 由折叠可得,∠DCF=∠5, ∵CD∥BE, ∴∠DCF=∠4=56°, ∴∠5=56°, ∴∠2=180°-∠DCF-∠5=180°-56°-56°=68°, 故答案为:68°. 【点睛】 本题考查平行线的判定和性质,解题的关键是熟练掌握:两直线平行,同位角相等;两直线平行,内错角相等. 十四、填空题 14.【分析】 根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列 解析: 【分析】 根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算. 【详解】 (20,9)表示第20排从左向右第9个数是从头开始的第1+2+3+4+…+19+9=199个数, ∵,即1,,,中第三个数 :, ∴的相反数为 故答案为. 【点睛】 此题主要考查了数字的变化规律,这类题型在中考中经常出现.对于找规律的题目找准变化是关键. 十五、填空题 15.(2,2),(-2,) 【分析】 直接利用某个“美丽点”到y轴的距离为2,得出x的值,进而求出y的值求出答案. 【详解】 解:∵某个“美丽点”到y轴的距离为2, ∴x=±2, ∵x+y=xy, ∴当 解析:(2,2),(-2,) 【分析】 直接利用某个“美丽点”到y轴的距离为2,得出x的值,进而求出y的值求出答案. 【详解】 解:∵某个“美丽点”到y轴的距离为2, ∴x=±2, ∵x+y=xy, ∴当x=2时, 则y+2=2y, 解得:y=2, ∴点P的坐标为(2,2), 当x=-2时, 则y-2=-2y, 解得:y=, ∴点P的坐标为(-2,), 综上所述:点P的坐标为(2,2)或(-2,). 故答案为:(2,2)或(-2,). 【点睛】 此题主要考查了点的坐标,正确分类讨论是解题关键. 十六、填空题 16.(2021,﹣2) 【分析】 观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标. 【详解 解析:(2021,﹣2) 【分析】 观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标. 【详解】 解:观察发现,每6个点形成一个循环, ∵A6(6,0), ∴OA6=6, ∵2021÷6=336…5, ∴点A2021的位于第337个循环组的第5个, ∴点A2021的横坐标为6×336+5=2021,其纵坐标为:﹣2, ∴点A2021的坐标为(2021,﹣2). 故答案为:(2021,﹣2). 【点睛】 此题主要考查坐标的规律探索,解题的关键是根据图形的特点发现规律进行求解. 十七、解答题 17.(1)x=3或x=-1;(2) 【分析】 (1)根据平方根的性质求解; (2)根据绝对值、算术平方根和立方根的性质求解. 【详解】 (1)解:∵; ∴ ∴x=3或x=-1 (2)原式= , 【 解析:(1)x=3或x=-1;(2) 【分析】 (1)根据平方根的性质求解; (2)根据绝对值、算术平方根和立方根的性质求解. 【详解】 (1)解:∵; ∴ ∴x=3或x=-1 (2)原式= , 【点睛】 本题考查平方根、算术平方根和立方根的运算,熟练掌握运算法则是解题关键. 十八、解答题 18.(1)x=;(2)x=-6 【分析】 (1)经过移项,系数化为1后,再开平方即可; (2)移项后开立方,再移项运算即可. 【详解】 (1) 解: (2) 解: 【点睛】 本题主要考查了实数的 解析:(1)x=;(2)x=-6 【分析】 (1)经过移项,系数化为1后,再开平方即可; (2)移项后开立方,再移项运算即可. 【详解】 (1) 解: (2) 解: 【点睛】 本题主要考查了实数的运算,熟悉掌握平方根和立方根的开方是解题的关键. 十九、解答题 19.对顶角相等;∠3;两直线平行,同位角相等;∠BFD;AB;内错角相等,两直线平行;两直线平行,内错角相等 【分析】 根据对顶角相等,平行线的性质与判定定理填空即可. 【详解】 证明:∵∠1=∠2,( 解析:对顶角相等;∠3;两直线平行,同位角相等;∠BFD;AB;内错角相等,两直线平行;两直线平行,内错角相等 【分析】 根据对顶角相等,平行线的性质与判定定理填空即可. 【详解】 证明:∵∠1=∠2,(已知) 又:∵∠1=∠3,(对顶角相等) ∴∠2=∠3(等量代换) (同位角相等,两直线平行) ∴∠A=∠BFD(两直线平行,同位角相等) ∵∠A=∠D(已知) ∴∠D=∠BFD(等量代换) ∴AB∥CD(内错角相等,两直线平行) ∴∠B=∠C(两直线平行,内错角相等). 【点睛】 本题考查了平行线的性质与判定,掌握平行线的性质与判定是解题的关键. 二十、解答题 20.(1),,;(2)见解析;(3) 【分析】 (1)先画出平移后的图形,结合直角坐标系可得出三点坐标; (2)根据平移的特点,分别找到各点的对应点,顺次连接即可得出答案; (3)将△ABC补全为长方形 解析:(1),,;(2)见解析;(3) 【分析】 (1)先画出平移后的图形,结合直角坐标系可得出三点坐标; (2)根据平移的特点,分别找到各点的对应点,顺次连接即可得出答案; (3)将△ABC补全为长方形,然后利用作差法求解即可. 【详解】 解:(1)平移后的三个顶点坐标分别为:,,; (2)画出平移后三角形; (3). 【点睛】 本题考查了平移作图的知识,解答本题的关键是根据平移的特点准确作出图形,第三问求解不规则图形面积的时候可以先补全,再减去. 二十一、解答题 21.【分析】 根据平方根的性质即可求出的值,根据立方根的定义求得的值,根据求得的小数部分是,即可求得答案. 【详解】 ∵一个正数的两个平方根为和, ∴, 解得:, ∵是的立方根, ∴, 解得:, ∵, 解析: 【分析】 根据平方根的性质即可求出的值,根据立方根的定义求得的值,根据求得的小数部分是,即可求得答案. 【详解】 ∵一个正数的两个平方根为和, ∴, 解得:, ∵是的立方根, ∴, 解得:, ∵, ∴的整数部分是6,则小数部分是:, ∴, ∴的平方根为:. 【点睛】 本题考查了平方根的性质,立方根的定义,估算无理数的大小,解题的关键是正确理解平方根的定义以及“夹逼法”的运用. 二十二、解答题 22.(1);(2)①见解析;②见解析, 【分析】 (1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形; ② 解析:(1);(2)①见解析;②见解析, 【分析】 (1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形; ②由题(1)的原理得出大正方形的边长为,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小. 【详解】 解:设正方形边长为a, ∵a2=2, ∴a=, 故答案为:,; (2)解:①裁剪后拼得的大正方形如图所示: ②设拼成的大正方形的边长为b, ∴b2=5, ∴b=±, 在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,则M表示的数为-3+,看图可知,表示-0.5的N点在M点的右方, ∴比较大小:. 【点睛】 本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键. 二十三、解答题 23.(1)49°,(2)44°,(3)∠OPQ=∠ORQ 【分析】 (1)根据∠OPA=∠QPB.可求出∠OPA的度数; (2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解 解析:(1)49°,(2)44°,(3)∠OPQ=∠ORQ 【分析】 (1)根据∠OPA=∠QPB.可求出∠OPA的度数; (2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题; (3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ. 【详解】 解:(1)∵∠OPA=∠QPB,∠OPQ=82°, ∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°, (2)作PC∥m, ∵m∥n, ∴m∥PC∥n, ∴∠AOP=∠OPC=43°, ∠BQP=∠QPC=49°, ∴∠OPQ=∠OPC+∠QPC=43°+49°=92°, ∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°, (3)∠OPQ=∠ORQ. 理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC, ∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角, ∴∠AOP=∠DOR,∠BQP=∠RQC, ∴∠OPQ=∠ORQ. 【点睛】 本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的. 二十四、解答题 24.(1);(2)不变化,,理由见解析;(3) 【分析】 (1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案; (2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解 解析:(1);(2)不变化,,理由见解析;(3) 【分析】 (1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案; (2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解; (3)根据平行线的性质,得;结合,推导得;再结合(1)的结论计算,即可得到答案. 【详解】 (1)∵BC,BD分别评分和, ∴, ∴ 又∵, ∴ ∵, ∴ ∴; (2)∵, ∴, 又∵BD平分 ∴, ∴; ∴与之间的数量关系保持不变; (3)∵, ∴ 又∵, ∴, ∵ ∴ 由(1)可得, ∴. 【点睛】 本题考查了角平分线、平行线的知识;解题的关键是熟练掌握角平分线、平行线的性质,从而完成求解. 二十五、解答题 25.(1),证明见解析;(2)证明见解析;(3). 【分析】 (1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG; (2)设CD与AE交于点H 解析:(1),证明见解析;(2)证明见解析;(3). 【分析】 (1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG; (2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG; (3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=α+5°,再根据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,求得α=70°,即可根据三角形内角和定理,得到∠EKD的度数. 【详解】 解:(1)∠AED=∠EAF+∠EDG.理由:如图1, 过E作EH∥AB, ∵AB∥CD, ∴AB∥CD∥EH, ∴∠EAF=∠AEH,∠EDG=∠DEH, ∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG; (2)证明:如图2,设CD与AE交于点H, ∵AB∥CD, ∴∠EAF=∠EHG, ∵∠EHG是△DEH的外角, ∴∠EHG=∠AED+∠EDG, ∴∠EAF=∠AED+∠EDG; (3)∵AI平分∠BAE, ∴可设∠EAI=∠BAI=α,则∠BAE=2α, 如图3,∵AB∥CD, ∴∠CHE=∠BAE=2α, ∵∠AED=20°,∠I=30°,∠DKE=∠AKI, ∴∠EDI=α+30°-20°=α+10°, 又∵∠EDI:∠CDI=2:1, ∴∠CDI=∠EDK=α+5°, ∵∠CHE是△DEH的外角, ∴∠CHE=∠EDH+∠DEK, 即2α=α+5°+α+10°+20°, 解得α=70°, ∴∠EDK=70°+10°=80°, ∴△DEK中,∠EKD=180°-80°-20°=80°. 【点睛】 本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中学 年级 下册 数学 期末 综合 复习 试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文