
2024年人教版中学七7年级下册数学期末试题(附答案).doc
《2024年人教版中学七7年级下册数学期末试题(附答案).doc》由会员分享,可在线阅读,更多相关《2024年人教版中学七7年级下册数学期末试题(附答案).doc(27页珍藏版)》请在咨信网上搜索。
2024年人教版中学七7年级下册数学期末试题(附答案) 一、选择题 1.如图,直线,被直线所截,则下列符合题意的结论是( ) A. B. C. D. 2.春意盎然,在婺外校园里下列哪种运动不属于平移( ) A.树枝随着春风摇曳 B.值日学生拉动可移动黑板 C.行政楼电梯的升降 D.晚自修后学生两列队伍整齐排列笔直前行 3.下列各点中,位于第二象限的是( ) A.(5,﹣2) B.(2,5) C.(﹣5,﹣5) D.(﹣3,2) 4.下列命题是假命题的是( ) A.两个角的和等于平角时,这两个角互为补角 B.内错角相等 C.两条平行线被第三条直线所截,内错角相等 D.对顶角相等 5.将一副三角板按如图放置,如果,则有是( ) A.15° B.30° C.45° D.60° 6.有下列说法:(1)-6是36的一个平方根;(2)16的平方根是4;(3);(4)是无理数;(5)当时,一定有是正数,其中正确的说法有( ) A.1个 B.2个 C.3个 D.4个 7.如图,已知直线,点为直线上一点,为射线上一点.若,,交于点,则的度数为( ) A.45° B.55° C.60° D.75° 8.如图,一个粒子在第一象限内及x轴、y轴上运动,在第一分钟,它从原点运动到点;第二分钟,它从点运动到点,而后它接着按图中箭头所示在与x轴、y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2021分钟时,这个粒子所在位置的坐标是( ) A. B. C. D. 九、填空题 9.9的算术平方根是 . 十、填空题 10.若与点关于轴对称,则的值是___________; 十一、填空题 11.如图,AD、AE分别是△ABC的角平分线和高,∠B=50°,∠C=70°,则∠DAE=_____________°. 十二、填空题 12.将一条长方形纸带按如图方式折叠,若,则的度数为________°. 十三、填空题 13.如图, 把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M 、N的位置上,若∠EFG=54°,则∠EGB=_______. 十四、填空题 14.定义:对任何有理数,都有,若已知=0,则=____________. 十五、填空题 15.下列四个命题:①直角坐标系中的点与有序实数对一一对应;②若大于0,不小于0,则点在第三象限;③过一点有且只有一条直线与已知直线平行;④若,则的算术平方根是.其中,是真命题的有______.(写出所有真命题的序号) 十六、填空题 16.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹的反射角等于入射角(反射前后的线与边的夹角相等),当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为Pn,则点P2021的坐标为______. 十七、解答题 17.计算下列各题: (1)+- (2). 十八、解答题 18.已知,,求下列各式的值: (1); (2). 十九、解答题 19.如图所示,于点,于点,若,则吗?下面是推理过程,请你填空或填写理由. 证明:∵于点,于点(已知), ∴(____________), ∴(________________________), ∴(________________________), ∵(已知) ∴(____________) ∵, ∴______(______________________________). ∴____________(等量代换) 二十、解答题 20.如图,在边长为1个单位长度的小正方形网格中建立平面直角坐标系.已知三角形ABC的顶点A的坐标为A(-1,4),顶点B的坐标为(-4,3),顶点C的坐标为(-3,1). (1)把三角形ABC向右平移5个单位长度,再向下平移4个单位长度得到三角形A′B′C′,请你画出三角形A′B′C′,并直接写出点A′的坐标; (2)若点P(m,n)为三角形ABC内的一点,则平移后点P在△A′B′C′内的对应点P′的坐标为 . (3)求三角形ABC的面积. 二十一、解答题 21.已知:是的整数部分,是的小数部分. 求: (1),值 (2)的平方根. 二十二、解答题 22.数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究. (1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽; (2)小葵在长方形内画出边长为a,b的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由. 二十三、解答题 23.如图,直线,一副直角三角板中,. (1)若如图1摆放,当平分时,证明:平分. (2)若如图2摆放时,则 (3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数. (4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长. (5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间. 二十四、解答题 24.如图1,E点在上,.. (1)求证: (2)如图2,平分,与的平分线交于H点,若比大,求的度数. (3)保持(2)中所求的的度数不变,如图3,平分平分,作,则的度数是否改变?若不变,请直接写出答案;若改变,请说明理由. 二十五、解答题 25.已知,如图1,直线l2⊥l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C不与点A重合,点D在直线11上,点A的右侧,过D作l3⊥l1,点E在直线l3上,点D的下方. (1)l2与l3的位置关系是 ; (2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED= °,∠ADC= °; (3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG; (4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索∠N:∠BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值. 【参考答案】 一、选择题 1.A 解析:A 【分析】 利用对顶角、同位角、同旁内角定义解答即可. 【详解】 解:A、∠1与∠3是对顶角,故原题说法正确,符合题意; B、由条件不能得出∠1=∠4,故原题说法错误,不符合题意; C、∠2与∠4是同位角,只有ab时,∠2=∠4,故原题说法错误,不符合题意; D、∠3与∠4是同旁内角,只有ab时,∠3+∠4=180°故原题说法错误,不符合题意; 故选:A. 【点睛】 此题主要考查了对顶角、同位角、同旁内角,关键是掌握各种角的定义. 2.A 【分析】 根据平移的特点可得答案. 【详解】 解:A、树枝随着春风摇曳是旋转运动; B、值日学生拉动可移动黑板是平移运动; C、行政楼电梯的升降是平移运动; D、晚自修后学生两列队伍整齐排列笔直 解析:A 【分析】 根据平移的特点可得答案. 【详解】 解:A、树枝随着春风摇曳是旋转运动; B、值日学生拉动可移动黑板是平移运动; C、行政楼电梯的升降是平移运动; D、晚自修后学生两列队伍整齐排列笔直前行是平移运动; 故选A. 【点睛】 此题主要考查了生活中的平移现象,关键是掌握平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等. 3.D 【分析】 依据位于第二象限的点的横坐标为负,纵坐标为正,即可得到结论. 【详解】 解:∵位于第二象限的点的横坐标为负,纵坐标为正, ∴位于第二象限的是(﹣3,2), 故选:B. 【点睛】 此题考查点的坐标,解题关键在于掌握坐标系中各象限坐标的特征. 4.B 【分析】 根据内错角、对顶角、补角的定义一一判断即可. 【详解】 解:A、两个角的和等于平角时,这两个角互为补角,为真命题; B、两直线平行,内错角相等,故错误,为假命题; C、两条平行线被第三条直线所截,内错角相等,为真命题; D、对顶角相等,为真命题; 故选:B. 【点睛】 本题考查命题与定理、内错角、对顶角、补角的定义等知识,解题的关键是熟练掌握基本概念,属于基础题. 5.C 【分析】 根据一副三角板的特征先得到∠E=60°,∠C=45°,∠1+∠2=90°,再根据已知求出∠1=60°,从而可证得AC∥DE,再根据平行线的性质即可求出∠4的度数. 【详解】 解:根据题意可知:∠E=60°,∠C=45°,∠1+∠2=90°, ∵, ∴∠1=60°, ∴∠1=∠E, ∴AC∥DE, ∴∠4=∠C=45°. 故选:C. 【点睛】 本题考查的是平行线的性质和余角、补角的概念,掌握平行线的性质定理和判定定理是解题的关键. 6.B 【分析】 根据平方根与立方根的定义与性质逐个判断即可. 【详解】 (1)是36的一个平方根,则此说法正确; (2)16的平方根是,则此说法错误; (3),则此说法正确; (4),4是有理数,则此说法错误; (5)当时,无意义,则此说法错误; 综上,正确的说法有2个, 故选:B. 【点睛】 本题考查了平方根与立方根,熟练掌握平方根与立方根的定义与性质是解题关键. 7.C 【分析】 利用,及平行线的性质,得到,再借助角之间的比值,求出,从而得出的大小. 【详解】 解:, , , , ,, , , , , 故选:. 【点睛】 本题考查了平行线的性质的综合应用,涉及的知识点有:平行线的性质、邻补角、三角形的内角和等知识,体现了数学的转化思想、见比设元等思想. 8.B 【分析】 找出粒子运动规律和坐标之间的关系即可解题. 【详解】 解:由题知(0,0)表示粒子运动了0分钟, (1,1)表示粒子运动了2=1×2分钟,将向左运动, (2,2)表示粒子运动了6=2× 解析:B 【分析】 找出粒子运动规律和坐标之间的关系即可解题. 【详解】 解:由题知(0,0)表示粒子运动了0分钟, (1,1)表示粒子运动了2=1×2分钟,将向左运动, (2,2)表示粒子运动了6=2×3分钟,将向下运动, (3,3)表示粒子运动了12=3×4分钟,将向左运动, ... 于是会出现: (44,44)点粒子运动了44×45=1980分钟,此时粒子将会向下运动, ∴在第2021分钟时,粒子又向下移动了2021−1980=41个单位长度, ∴粒子的位置为(44,3), 故选:B. 【点睛】 本题考查的是动点坐标问题,解题的关键是找出粒子的运动规律. 九、填空题 9.【分析】 根据一个正数的算术平方根就是其正的平方根即可得出. 【详解】 ∵, ∴9算术平方根为3. 故答案为3. 【点睛】 本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键. 解析:【分析】 根据一个正数的算术平方根就是其正的平方根即可得出. 【详解】 ∵, ∴9算术平方根为3. 故答案为3. 【点睛】 本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键. 十、填空题 10.1 【分析】 根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案. 【详解】 由点与点的坐标关于y轴对称,得: ,, 解得:,, ∴. 故答案为:. 【点睛】 本题 解析:1 【分析】 根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案. 【详解】 由点与点的坐标关于y轴对称,得: ,, 解得:,, ∴. 故答案为:. 【点睛】 本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数. 十一、填空题 11.10 【分析】 根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE,然后求解即可. 【详解】 解:∵∠B=50°,∠C=70°, ∴∠BAC=1 解析:10 【分析】 根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE,然后求解即可. 【详解】 解:∵∠B=50°,∠C=70°, ∴∠BAC=180°-∠B-∠C=180°-50°-70°=60°, ∵AD是角平分线, ∴∠BAD=∠BAC=×60°=30°, ∵AE是高, ∴∠BAE=90°-∠B=90°-50°=40°, ∴∠DAE=∠BAE-∠BAD=40°-30°=10°. 故答案为:10. 【点睛】 本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,直角三角形两锐角互余的性质,熟记定理并准确识图是解题的关键. 十二、填空题 12.36 【分析】 根据平行线的性质、折叠的性质即可解决. 【详解】 ∵AB∥CD,如图 ∴∠GEC=∠1=108゜ 由折叠的性质可得:∠2=∠FED ∵∠2+∠FED+∠GEC=180゜ ∴∠2= 解析:36 【分析】 根据平行线的性质、折叠的性质即可解决. 【详解】 ∵AB∥CD,如图 ∴∠GEC=∠1=108゜ 由折叠的性质可得:∠2=∠FED ∵∠2+∠FED+∠GEC=180゜ ∴∠2= 故答案为:36 【点睛】 本题考查了平行线的性质、折叠的性质、平角的概念,关键是掌握折叠的性质. 十三、填空题 13.108° 【分析】 由折叠的性质可得:∠DEF=∠GEF,根据平行线的性质:两直线平行,内错角相等可得:∠DEF=∠EFG=54°,从而得到∠GEF=54°,根据平角的定义即可求得∠1,再由平行线的 解析:108° 【分析】 由折叠的性质可得:∠DEF=∠GEF,根据平行线的性质:两直线平行,内错角相等可得:∠DEF=∠EFG=54°,从而得到∠GEF=54°,根据平角的定义即可求得∠1,再由平行线的性质求得∠EGB. 【详解】 解:∵AD∥BC,∠EFG=54°, ∴∠DEF=∠EFG=54°,∠1+∠2=180°, 由折叠的性质可得:∠GEF=∠DEF=54°, ∴∠1=180°-∠GEF-∠DEF=180°-54°-54°=72°, ∴∠EGB=180°-∠1=108°. 故答案为:108°. 【点睛】 此题主要考查折叠的性质,平行线的性质和平角的定义,解决问题的关键是根据折叠的方法找准对应角,求出∠GEF的度数. 十四、填空题 14.【分析】 先求出a,b的值,2和-3分别代表新运算中的a、b,把a、b的值代入所给的式子即可求值. 【详解】 解:∵=0,∴a=2,b= -3, ∴==4-6+9=7, 故答案为:7. 【点睛】 解析:【分析】 先求出a,b的值,2和-3分别代表新运算中的a、b,把a、b的值代入所给的式子即可求值. 【详解】 解:∵=0,∴a=2,b= -3, ∴==4-6+9=7, 故答案为:7. 【点睛】 本题是定义新运算题型,直接把对应的数字代入所给的式子可求出所要的结果.解题的关键是对号入座不要找错对应关系. 十五、填空题 15.①④ 【分析】 根据平面直角坐标系,平行线,算术平方根的概念进行判断 【详解】 解:①直角坐标系中的点与有序实数对一一对应;正确;故此命题是真命题; ②若大于0,不小于0,则>0,≥0,点在第三象限 解析:①④ 【分析】 根据平面直角坐标系,平行线,算术平方根的概念进行判断 【详解】 解:①直角坐标系中的点与有序实数对一一对应;正确;故此命题是真命题; ②若大于0,不小于0,则>0,≥0,点在第三象限或x轴的负半轴上;故此命题是假命题; ③过直线外一点有且只有一条直线与已知直线平行;故此命题是假命题; ④若,则x=1,y=4,则的算术平方根是,正确,故此命题是真命题. 故答案为:①④ 【点睛】 此题主要考查了命题与定理,正确掌握相关定义是解题关键. 十六、填空题 16.(4,3) 【分析】 按照反弹规律依次画图即可. 【详解】 解:如图: 根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点 解析:(4,3) 【分析】 按照反弹规律依次画图即可. 【详解】 解:如图: 根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点(0,1)之后,再循环反射,每6次一循环, 2021÷6=336…5, 即点P2021的坐标是(4,3). 故答案为:(4,3). 【点睛】 本题考查了生活中的轴对称现象,点的坐标.解题的关键是能够正确找到循环数值,从而得到规律. 十七、解答题 17.(1)1 (2) 【详解】 试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可; 试题解析: (1)原式=; (2)原式=-3-0-+0.5+ = 解析:(1)1 (2) 【详解】 试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可; 试题解析: (1)原式=; (2)原式=-3-0-+0.5+ = 十八、解答题 18.(1)44;(2)48 【分析】 (1)把a+b=6两边平方,利用完全平方公式化简,将ab的值代入计算即可求出原式的值; (2)将a2+b2与ab的值代入原式计算即可求出值. 【详解】 解:(1)把 解析:(1)44;(2)48 【分析】 (1)把a+b=6两边平方,利用完全平方公式化简,将ab的值代入计算即可求出原式的值; (2)将a2+b2与ab的值代入原式计算即可求出值. 【详解】 解:(1)把两边平方得:, 把代入得:, ∴; (2)∵,, ∴===48. 【点睛】 此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键. 十九、解答题 19.垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;∠E;两直线平行,同位角相等;∠2;∠3. 【分析】 根据垂直的定义得到∠ADC=∠EGC=90°,根据平行线的判定得到AD∥E 解析:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;∠E;两直线平行,同位角相等;∠2;∠3. 【分析】 根据垂直的定义得到∠ADC=∠EGC=90°,根据平行线的判定得到AD∥EG,由平行线的性质得到∠1=∠2,等量代换得到∠E=∠2,由平行线的性质得到∠E=∠3,等量代换即可得到结论. 【详解】 证明:∵AD⊥BC于点D,EG⊥BC于点G(已知), ∴∠ADC=∠EGC=90°(垂直的定义), ∴AD∥EG(同位角相等,两直线平行), ∴∠1=∠2(两直线平行,内错角相等), ∵∠E=∠1(已知), ∴∠E=∠2(等量代换), ∵AD∥EG, ∴∠E=∠3(两直线平行,同位角相等), ∴∠2=∠3(等量代换), 故答案为:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;∠E;两直线平行,同位角相等;∠2;∠3. 【点睛】 本题主要考查了平行线的性质,垂直的定义,熟练掌握平行线的性质是解题的关键. 二十、解答题 20.(1)作图见解析,A′(4,0);(2)(m+5,n-4);(3)3.5. 【分析】 (1)首先确定A、B、C三点平移后的位置,再连接即可; (2)利用平移的性质得出P(m,n)的对应点P′的坐标即 解析:(1)作图见解析,A′(4,0);(2)(m+5,n-4);(3)3.5. 【分析】 (1)首先确定A、B、C三点平移后的位置,再连接即可; (2)利用平移的性质得出P(m,n)的对应点P′的坐标即可; (3)直接利用△ABC所在矩形面积减去周围三角形面积进而得出答案. 【详解】 解:(1)如图所示:△A′B′C′即为所求: A′(4,0); (2)∵△ABC先向右平移5个单位长度,再向下平移4个单位长度,得到△A′B′C′, ∴P(m,n)的对应点P′的坐标为(m+5,n-4); (3)△ABC的面积=3×3−×2×1−×3×1−×3×2=3.5. 【点睛】 本题主要考查了坐标与图形的变化-平移,三角形面积求法以及坐标系内图形平移,正确得出对应点位置是解题关键. 二十一、解答题 21.(1),. (2). 【分析】 (1)首先得出接近的整数,进而得出a,b的值; (2)根据平方根即可解答. 【详解】 , ∴整数部分,小数部分. (2) 原式 , 则的平方根为. 【点睛】 此题 解析:(1),. (2). 【分析】 (1)首先得出接近的整数,进而得出a,b的值; (2)根据平方根即可解答. 【详解】 , ∴整数部分,小数部分. (2) 原式 , 则的平方根为. 【点睛】 此题主要考查了估算无理数的大小,正确得出a,b的值是解题关键. 二十二、解答题 22.(1)长为,宽为;(2)正确,理由见解析 【分析】 (1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可; (2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程 解析:(1)长为,宽为;(2)正确,理由见解析 【分析】 (1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可; (2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程组,解方程组求出a即可得到大正方形的面积. 【详解】 解:(1)设长为3x,宽为2x, 则:3x•2x=30, ∴x=(负值舍去), ∴3x=,2x=, 答:这个长方形纸片的长为,宽为; (2)正确.理由如下: 根据题意得:, 解得:, ∴大正方形的面积为102=100. 【点睛】 本题考查了算术平方根,二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键. 二十三、解答题 23.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】 (1)运用角平分线定义及平行线性质即可证得结论; (2)如图2,过点E作EK∥MN,利用平行线性 解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】 (1)运用角平分线定义及平行线性质即可证得结论; (2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案; (3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案; (4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案; (5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可. 【详解】 (1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°, ∵ED平分∠PEF, ∴∠PEF=2∠PED=2∠DEF=2×60°=120°, ∵PQ∥MN, ∴∠MFE=180°−∠PEF=180°−120°=60°, ∴∠MFD=∠MFE−∠DFE=60°−30°=30°, ∴∠MFD=∠DFE, ∴FD平分∠EFM; (2)如图2,过点E作EK∥MN, ∵∠BAC=45°, ∴∠KEA=∠BAC=45°, ∵PQ∥MN,EK∥MN, ∴PQ∥EK, ∴∠PDE=∠DEK=∠DEF−∠KEA, 又∵∠DEF=60°. ∴∠PDE=60°−45°=15°, 故答案为:15°; (3)如图3,分别过点F、H作FL∥MN,HR∥PQ, ∴∠LFA=∠BAC=45°,∠RHG=∠QGH, ∵FL∥MN,HR∥PQ,PQ∥MN, ∴FL∥PQ∥HR, ∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA, ∵∠FGQ和∠GFA的角平分线GH、FH相交于点H, ∴∠QGH=∠FGQ,∠HFA=∠GFA, ∵∠DFE=30°, ∴∠GFA=180°−∠DFE=150°, ∴∠HFA=∠GFA=75°, ∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°, ∴∠GFL=∠GFA−∠LFA=150°−45°=105°, ∴∠RHG=∠QGH=∠FGQ=(180°−105°)=37.5°, ∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°; (4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A, ∴D′A=DF,DD′=EE′=AF=5cm, ∵DE+EF+DF=35cm, ∴DE+EF+D′A+AF+DD′=35+10=45(cm), 即四边形DEAD′的周长为45cm; (5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°, 分三种情况: BC∥DE时,如图5,此时AC∥DF, ∴∠CAE=∠DFE=30°, ∴3t=30, 解得:t=10; BC∥EF时,如图6, ∵BC∥EF, ∴∠BAE=∠B=45°, ∴∠BAM=∠BAE+∠EAM=45°+45°=90°, ∴3t=90, 解得:t=30; BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R, ∵∠DRM=∠EAM+∠DFE=45°+30°=75°, ∴∠BKA=∠DRM=75°, ∵∠ACK=180°−∠ACB=90°, ∴∠CAK=90°−∠BKA=15°, ∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°, ∴3t=120, 解得:t=40, 综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行. 【点睛】 本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键. 二十四、解答题 24.(1)见解析;(2)100°;(3)不变,40° 【分析】 (1)如图1,延长交于点,根据,,可得,所以,可得,又,进而可得结论; (2)如图2,作,,根据,可得,根据平行线的性质得角之间的关系,再 解析:(1)见解析;(2)100°;(3)不变,40° 【分析】 (1)如图1,延长交于点,根据,,可得,所以,可得,又,进而可得结论; (2)如图2,作,,根据,可得,根据平行线的性质得角之间的关系,再根据比大,列出等式即可求的度数; (3)如图3,过点作,设直线和直线相交于点,根据平行线的性质和角平分线定义可求的度数. 【详解】 解:(1)证明:如图1,延长交于点, ,, , , , , , ; (2)如图2,作,, , , ,, 平分, , , , , , , 平分, , , , , 设, , 比大, , 解得 的度数为; (3)的度数不变,理由如下: 如图3,过点作,设直线和直线相交于点, 平分,平分, , , ,, , , , , 由(2)可知:, , , , , , . 【点睛】 本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质. 二十五、解答题 25.(1)互相平行;(2)35,20;(3)见解析;(4)不变, 【分析】 (1)根据平行线的判定定理即可得到结论; (2)根据角平分线的定义和平行线的性质即可得到结论; (3)根据角平分线的定义和平行 解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变, 【分析】 (1)根据平行线的判定定理即可得到结论; (2)根据角平分线的定义和平行线的性质即可得到结论; (3)根据角平分线的定义和平行线的性质即可得到结论; (4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论. 【详解】 解:(1)直线l2⊥l1,l3⊥l1, ∴l2∥l3, 即l2与l3的位置关系是互相平行, 故答案为:互相平行; (2)∵CE平分∠BCD, ∴∠BCE=∠DCE=BCD, ∵∠BCD=70°, ∴∠DCE=35°, ∵l2∥l3, ∴∠CED=∠DCE=35°, ∵l2⊥l1, ∴∠CAD=90°, ∴∠ADC=90°﹣70°=20°; 故答案为:35,20; (3)∵CF平分∠BCD, ∴∠BCF=∠DCF, ∵l2⊥l1, ∴∠CAD=90°, ∴∠BCF+∠AGC=90°, ∵CD⊥BD, ∴∠DCF+∠CFD=90°, ∴∠AGC=∠CFD, ∵∠AGC=∠DGF, ∴∠DGF=∠DFG; (4)∠N:∠BCD的值不会变化,等于;理由如下: ∵l2∥l3, ∴∠BED=∠EBH, ∵∠DBE=∠DEB, ∴∠DBE=∠EBH, ∴∠DBH=2∠DBE, ∵∠BCD+∠BDC=∠DBH, ∴∠BCD+∠BDC=2∠DBE, ∵∠N+∠BDN=∠DBE, ∴∠BCD+∠BDC=2∠N+2∠BDN, ∵DN平分∠BDC, ∴∠BDC=2∠BDN, ∴∠BCD=2∠N, ∴∠N:∠BCD=. 【点睛】 本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2024 年人教版 中学 年级 下册 数学 期末 试题 答案

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文