2022年人教版中学七7年级下册数学期末试题(及答案).doc
《2022年人教版中学七7年级下册数学期末试题(及答案).doc》由会员分享,可在线阅读,更多相关《2022年人教版中学七7年级下册数学期末试题(及答案).doc(23页珍藏版)》请在咨信网上搜索。
2022年人教版中学七7年级下册数学期末试题(及答案) 一、选择题 1.下列所示的四个图形中,和不是同位角的是( ) A.① B.② C.③ D.④ 2.下列车标,可看作图案的某一部分经过平移所形成的是( ) A. B. C. D. 3.点在第二象限内,则点在第______象限. A.一 B.二 C.三 D.四 4.下列语句中,是假命题的是( ) A.有理数和无理数统称实数 B.在同一平面内,过一点有且只有一条直线与已知直线垂直 C.在同一平面内,垂直于同一条直线的两条直线互相平行 D.两个锐角的和是锐角 5.如图,如果AB∥EF,EF∥CD,下列各式正确的是( ) A.∠1+∠2−∠3=90° B.∠1−∠2+∠3=90° C.∠1+∠2+∠3=90° D.∠2+∠3−∠1=180° 6.对于有理数a.b,定义min{a,b}的含义为:当a<b时,min{a,b}=a,当b<a时,min{a,b}=b.例如:min{1,﹣2}=﹣2,已知min{,a}=a,min{,b}=,且a和b为两个连续正整数,则a﹣b的立方根为( ) A.﹣1 B.1 C.﹣2 D.2 7.如图,已知,点在上,连接,作平分交于点,,则的度数为( ). A. B. C. D. 8.已知点,将点作如下平移:第次将向右平移个单位,向上平移个单位得到;第次将向右平移个单位,向上平移个单位得到,,第次将点向右平移个单位,向上平移个单位得到,则的坐标为( ) A. B. C. D. 九、填空题 9.若=x,则x的值为______. 十、填空题 10.已知点关于轴的对称点为,关于轴的对称点为,那么点的坐标是________. 十一、填空题 11.如图,在中,,,是的角平分线,,垂足为,,则__________. 十二、填空题 12.如图,直线,被直线所截,,,则_________. 十三、填空题 13.如图,折叠三角形纸片ABC,使点B与点C重合,折痕为DE;展平纸片,连接AD.若AB=6cm,AC=4cm,则△ABD与△ACD的周长之差为____________. 十四、填空题 14.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若,则m,n,p,q四个实数中,绝对值最大的是________. 十五、填空题 15.把所有的正整数按如图所示规律排列形成数表.若正整数6对应的位置记为,则对应的正整数是_______. 第1列 第2列 第3列 第4列 …… 第1行 1 2 5 10 …… 第2行 4 3 6 11 …… 第3行 9 8 7 12 …… 第4行 16 15 14 13 …… 第5行 …… …… …… …… …… 十六、填空题 16.如图所示的平面直角坐标系中,有一系列规律点,它们分别是以O为顶点,边长为正整数的正方形的顶点,A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,2),A6(0,2),A7(0,3),A8(3,3)……依此规律A100坐标为________. 十七、解答题 17.计算下列各题: (1)+- (2). 十八、解答题 18.求下列各式中的值: (1);(2);(3). 十九、解答题 19.如图,已知∠AED=∠C,∠DEF=∠B,试说明∠EFG+∠BDG=180∘,请完成下列填空: ∵∠AED=∠C (_________) ∴ED∥BC(_________) ∴∠DEF=∠EHC (___________) ∵∠DEF=∠B(已知) ∴_______(等量代换) ∴BD∥EH(同位角相等,两直线平行) ∴∠BDG=∠DFE(两直线平行,内错角相等) ∵_________________(邻补角的意义) ∴∠EFG+∠BDG=180∘(___________) 二十、解答题 20.如图,在平面直角坐标系中,已知三角形三点的坐标分别为,,. (1)求三角形的面积; (2)在轴上存在一点,使三角形的面积等于三角形面积,求点的坐标. 二十一、解答题 21.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:因为<<,即2<<3,所以的整数部分为2,小数部分为(﹣2) 请解答: (1)的整数部分是 ,小数部分是 ; (2)如果的小数部分为a,的整数部分为b,求a+b﹣的值. 二十二、解答题 22.有一块正方形钢板,面积为16平方米. (1)求正方形钢板的边长. (2)李师傅准备用它裁剪出一块面积为12平方米的长方形工件,且要求长宽之比为,问李师傅能办到吗?若能,求出长方形的长和宽;若不能,请说明理由.(参考数据:,). 二十三、解答题 23.阅读下面材料: 小亮同学遇到这样一个问题: 已知:如图甲,ABCD,E为AB,CD之间一点,连接BE,DE,得到∠BED. 求证:∠BED=∠B+∠D. (1)小亮写出了该问题的证明,请你帮他把证明过程补充完整. 证明:过点E作EFAB, 则有∠BEF= . ∵ABCD, ∴ , ∴∠FED= . ∴∠BED=∠BEF+∠FED=∠B+∠D. (2)请你参考小亮思考问题的方法,解决问题:如图乙, 已知:直线ab,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E. ①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数; ②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示). 二十四、解答题 24.已知,点为平面内一点,于. (1)如图1,点在两条平行线外,则与之间的数量关系为______; (2)点在两条平行线之间,过点作于点. ①如图2,说明成立的理由; ②如图3,平分交于点平分交于点.若,求的度数. 二十五、解答题 25.如图①所示,在三角形纸片中,,,将纸片的一角折叠,使点落在内的点处. (1)若,________. (2)如图①,若各个角度不确定,试猜想,,之间的数量关系,直接写出结论. ②当点落在四边形外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,,,之间又存在什么关系?请说明. (3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的和是________. 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可. 【详解】 解:选项A、B、D中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角; 选项C中,∠1与∠2的两条边都不在同一条直线上,不是同位角. 故选:C. 【点睛】 本题考查了同位角的应用,注意:两条直线被第三条直线所截,如果有两个角在第三条直线的同旁,并且在两条直线的同侧,那么这两个角叫同位角. 2.D 【分析】 根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可. 【详解】 解:A、不是经过平移所形成的,故此选项错误; B、不是是经过平移所形成的,故此选项错误; C、不是经过平 解析:D 【分析】 根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可. 【详解】 解:A、不是经过平移所形成的,故此选项错误; B、不是是经过平移所形成的,故此选项错误; C、不是经过平移所形成的,故此选项错误; D、是经过平移所形成的,故此选项正确; 故选:D. 【点睛】 此题主要考查了利用平移设计图案,关键是掌握平移定义. 3.D 【分析】 先根据第二象限内点的横坐标是负数,纵坐标是正数判断出m、n的正负情况,再根据各象限内点的坐标特征求解. 【详解】 解:∵点P(m,n)在第二象限, ∴m<0,n>0, ∴-m>0,m-n<0, ∴点Q(-m,m-n)在第四象限. 故选D. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.D 【分析】 根据实数的分类,垂直的性质,平行线的判定,锐角的定义逐项分析即可 【详解】 A. 有理数和无理数统称实数,正确,是真命题,不符合题意; B. 在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题,不符合题意; C. 在同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,不符合题意; D. 两个锐角的和不一定是锐角,例如,故D选项是假命题,符合题意 故选D 【点睛】 本题考查了真假命题的判定,实数的分类,垂直的性质,平行线的判定,锐角的定义,掌握相关性质定理是解题的关键. 5.D 【分析】 根据平行线的性质,即可得到∠3=∠COE,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°. 【详解】 ∵EF∥CD ∴∠3=∠COE ∴∠3−∠1=∠COE−∠1=∠BOE ∵AB∥EF ∴∠2+∠BOE=180°,即∠2+∠3−∠1=180° 故选:D. 【点睛】 本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补. 6.A 【分析】 根据a,b的范围即可求出a−b的立方根. 【详解】 解:根据题意得:a≤,b≥, ∵25<30<36, ∴5<<6, ∵a和b为两个连续正整数, ∴a=5,b=6, ∴a﹣b=﹣1, ∴﹣1的立方根是﹣1, 故选:A. 【点睛】 本题考查用新定义解决数学问题及无理数的估计,立方根的求法,正确理解新定义是求解本题的关键. 7.A 【分析】 由平行线的性质可得,再由角平分线性质可得,利用邻补角可求的度数. 【详解】 解:,, , 平分交于点, , . 故选:A. 【点睛】 本题主要考查平行线的性质及角平分线的定义,解答的关键是熟记并灵活运用平行线的性质. 8.C 【分析】 解:从到的过程中,找到共向右、向上平移的规律、,令,则共向右、向上平移了:、,即可得出的坐标. 【详解】 解:可将点看成是两个方向的移动, 从到的过程中, 共向右平移了 , 共向上平移 解析:C 【分析】 解:从到的过程中,找到共向右、向上平移的规律、,令,则共向右、向上平移了:、,即可得出的坐标. 【详解】 解:可将点看成是两个方向的移动, 从到的过程中, 共向右平移了 , 共向上平移了 , 令,则共向右平移了:, 共向上平移了, , 又, 故, 故选:C. 【点睛】 本题考查了点的坐标规律问题,解题的关键是找到向右及向上平移的规律,再利用规律进行解答. 九、填空题 9.0或1 【分析】 根据算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解. 【详解】 ∵02=0,12=1, ∴0的算术平方根为0,1的算术平方根 解析:0或1 【分析】 根据算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解. 【详解】 ∵02=0,12=1, ∴0的算术平方根为0,1的算术平方根为1. 故答案是:0或1. 【点睛】 考查了算术平方根的定义,解题关键是利用算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解. 十、填空题 10.【分析】 根据点坐标关于坐标轴的对称规律即可得. 【详解】 点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变 点关于轴 解析: 【分析】 根据点坐标关于坐标轴的对称规律即可得. 【详解】 点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变 点关于轴的对称点为,则点P的纵坐标为1 点关于轴的对称点为,则点P的横坐标为2 则点P的坐标为 故答案为:. 【点睛】 本题考查了点坐标关于坐标轴的对称规律,掌握对称规律是解题关键. 十一、填空题 11.【解析】 已知∠C=90°,AD是△ABC的角平分线,DE⊥AB,根据角平分线的性质可得DC=DE=1;因,根据30°直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3. 解析:【解析】 已知∠C=90°,AD是△ABC的角平分线,DE⊥AB,根据角平分线的性质可得DC=DE=1;因,根据30°直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3. 十二、填空题 12.100° 【分析】 先根据平行线的性质得出∠3=80°,再由邻补角得到∠2=100°. 【详解】 如图, ∵,, ∴∠3=80°, 又∵∠2+∠3=180°, ∴∠2=180°-∠3=180°-8 解析:100° 【分析】 先根据平行线的性质得出∠3=80°,再由邻补角得到∠2=100°. 【详解】 如图, ∵,, ∴∠3=80°, 又∵∠2+∠3=180°, ∴∠2=180°-∠3=180°-80°=100°. 故答案为:100°. 【点睛】 此题主要考查了平行线的性质以及邻补角,熟练掌握它们的性质是解答此题的关键. 十三、填空题 13.2cm 【分析】 由折叠的性质可得BD=CD,即可求解. 【详解】 解:∵折叠三角形纸片ABC,使点B与点C重合, ∴BD=CD, ∵△ABD的周长=AB+BD+AD=6+BD+AD,△ACD的周长 解析:2cm 【分析】 由折叠的性质可得BD=CD,即可求解. 【详解】 解:∵折叠三角形纸片ABC,使点B与点C重合, ∴BD=CD, ∵△ABD的周长=AB+BD+AD=6+BD+AD,△ACD的周长=AC+AD+CD=4+CD+AD, ∴△ABD与△ACD的周长之差=6-4=2cm, 故答案为:2cm. 【点睛】 本题考查了翻折变换,掌握折叠的性质是本题关键. 十四、填空题 14.【分析】 根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决. 【详解】 ∵, ∴n和q互为相反数,O在线段NQ的中点处, ∴绝对值最大的是点P表示的数. 故 解析: 【分析】 根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决. 【详解】 ∵, ∴n和q互为相反数,O在线段NQ的中点处, ∴绝对值最大的是点P表示的数. 故答案为:. 【点睛】 本题考查了实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答. 十五、填空题 15.138 【分析】 根据表格中的数据,以及正整数6对应的位置记为,可得表示方法,观察出1行1列数的特点为12-0,2行2列数的特点为22-1,3行3列数的特点为32-2,…n行n列数的特点为(n2-n 解析:138 【分析】 根据表格中的数据,以及正整数6对应的位置记为,可得表示方法,观察出1行1列数的特点为12-0,2行2列数的特点为22-1,3行3列数的特点为32-2,…n行n列数的特点为(n2-n+1),且每一行的第一个数字逆箭头方向顺次减少1,由此进一步解决问题. 【详解】 解:∵正整数6对应的位置记为, 即表示第2行第3列的数, ∴表示第12行第7列的数, 由1行1列的数字是12-0=12-(1-1)=1, 2行2列的数字是22-1=22-(2-1)=3, 3行3列的数字是32-2=32-(3-1)=7, … n行n列的数字是n2-(n-1)=n2-n+1, ∴第12行12列的数字是122-12+1=133, ∴第12行第7列的数字是138, 故答案为:138. 【点睛】 此题考查观察分析归纳总结顾虑的能力,解答此题的关键是找出两个规律,即n行n列数的特点为(n2-n+1),且每一行的第一个数字逆箭头方向顺次减少1,此题有难度. 十六、填空题 16.(34,0) 【分析】 本题是一道关于数字猜想的问题,根据已知条件得出坐标之间每三个增加一次,找出第100个所在位置即可得出答案. 【详解】 解:∵A1(0,1)、A2(1,1)、A3(1,0)、A 解析:(34,0) 【分析】 本题是一道关于数字猜想的问题,根据已知条件得出坐标之间每三个增加一次,找出第100个所在位置即可得出答案. 【详解】 解:∵A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0)、A5(2,2)、A6(0,2)、A7(0,3)、A8(3,3)…, ∴数据每隔三个增加一次,100÷3得33余1,则点A在x轴上, 故A100坐标为(34,0), 故答案为:(34,0) 【点睛】 本题考查了规律型-点的坐标:通过特殊到一般解决此类问题,利用前面正方形的边长与字母A的脚标数之间的联系寻找规律. 十七、解答题 17.(1)1 (2) 【详解】 试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可; 试题解析: (1)原式=; (2)原式=-3-0-+0.5+ = 解析:(1)1 (2) 【详解】 试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可; 试题解析: (1)原式=; (2)原式=-3-0-+0.5+ = 十八、解答题 18.(1);(2);(3) 【分析】 直接根据平方根的定义逐个解答即可. 【详解】 解:(1)∵, ∴; (2)∵, ∴, ∴; (3)∵, ∴, ∴. 【点睛】 此题主要考查了平方根的定义,熟练掌握平 解析:(1);(2);(3) 【分析】 直接根据平方根的定义逐个解答即可. 【详解】 解:(1)∵, ∴; (2)∵, ∴, ∴; (3)∵, ∴, ∴. 【点睛】 此题主要考查了平方根的定义,熟练掌握平方根的定义是解题关键. 十九、解答题 19.已知;同位角相等,两直线平行;两直线平行,内错角相等;∠EHC =∠B;∠DFE+∠EFG =180∘;等量代换 【分析】 根据同位角相等,两直线平行推出ED∥BC,通过两直线平行,内错角相等推出∠ 解析:已知;同位角相等,两直线平行;两直线平行,内错角相等;∠EHC =∠B;∠DFE+∠EFG =180∘;等量代换 【分析】 根据同位角相等,两直线平行推出ED∥BC,通过两直线平行,内错角相等推出∠DEF=∠EHC,再运用等量代换得到∠EHC =∠B,最后推出BD∥EH,∠BDG=∠DFE,再利用邻补角的意义推出结论,据此回答问题. 【详解】 解:∵∠AED=∠C (已知) ∴ED∥BC(同位角相等,两直线平行) ∴∠DEF=∠EHC (两直线平行,内错角相等) ∵∠DEF=∠B(已知) ∴∠EHC =∠B (等量代换) ∴BD∥EH(同位角相等,两直线平行) ∴∠BDG=∠DFE(两直线平行,内错角相等) ∵∠DFE+∠EFG =180∘(邻补角的意义) ∴∠EFG+∠BDG=180∘(等量代换). 【点睛】 本题主要考查平行线的判定和性质,属于综合题,难度一般,熟练掌握平行线的判定和性质是解题关键. 二十、解答题 20.(1)的面积为5;(2)或 【分析】 (1)根据割补法可直接进行求解; (2)由(1)可得,进而△的面积以点B的纵坐标为高,ON为底,然后可得ON=5,最后问题可求解. 【详解】 解:(1)由图象可 解析:(1)的面积为5;(2)或 【分析】 (1)根据割补法可直接进行求解; (2)由(1)可得,进而△的面积以点B的纵坐标为高,ON为底,然后可得ON=5,最后问题可求解. 【详解】 解:(1)由图象可得: ; (2)设点,由题意得:, ∴△的面积以点B的纵坐标为高,ON为底,即, ∴, ∴或. 【点睛】 本题主要考查图形与坐标,熟练掌握点的坐标表示的几何意义及割补法是解题的关键. 二十一、解答题 21.(1)3, ﹣3;(2)1. 【分析】 (1)根据解答即可; (2)根据2<<3得出a,根据3<<4得出b,再把a,b的值代入计算即可. 【详解】 (1)∵, ∴的整数部分是3,小数部分是﹣3, 解析:(1)3, ﹣3;(2)1. 【分析】 (1)根据解答即可; (2)根据2<<3得出a,根据3<<4得出b,再把a,b的值代入计算即可. 【详解】 (1)∵, ∴的整数部分是3,小数部分是﹣3, 故答案为:3,﹣3; (2)∵2<<3,a=﹣2, ∵3<<4, ∴b=3, a+b﹣=﹣2+3﹣=1. 【点睛】 此题考查无理数的估算,正确掌握数的平方是解题的关键. 二十二、解答题 22.(1)4米 (2)见解析 【分析】 (1)根据正方形边长与面积间的关系求解即可; (2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论. 【详解】 解 解析:(1)4米 (2)见解析 【分析】 (1)根据正方形边长与面积间的关系求解即可; (2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论. 【详解】 解:(1)正方形的面积是16平方米, 正方形钢板的边长是米; (2)设长方形的长宽分别为米、米, 则, , , ,, 长方形长是米,而正方形的边长为4米,所以李师傅不能办到. 【点睛】 本题考查了算术平方根的实际应用,灵活的利用算术平方根表示正方形和长方形的边长是解题的关键. 二十三、解答题 23.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣ 【分析】 (1)根据平行线的判定定理与性质定理解答即可; (2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°, 解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣ 【分析】 (1)根据平行线的判定定理与性质定理解答即可; (2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考小亮思考问题的方法即可求∠BED的度数; ②如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考小亮思考问题的方法即可求出∠BED的度数. 【详解】 解:(1)过点E作EF∥AB, 则有∠BEF=∠B, ∵AB∥CD, ∴EF∥CD, ∴∠FED=∠D, ∴∠BED=∠BEF+∠FED=∠B+∠D; 故答案为:∠B;EF;CD;∠D; (2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA. ∵AB∥CD, ∴EF∥CD. ∴∠FED=∠EDC. ∴∠BEF+∠FED=∠EBA+∠EDC. 即∠BED=∠EBA+∠EDC, ∵BE平分∠ABC,DE平分∠ADC, ∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°, ∴∠BED=∠EBA+∠EDC=65°. 答:∠BED的度数为65°; ②如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°. ∴∠BEF=180°﹣∠EBA, ∵AB∥CD, ∴EF∥CD. ∴∠FED=∠EDC. ∴∠BEF+∠FED=180°﹣∠EBA+∠EDC. 即∠BED=180°﹣∠EBA+∠EDC, ∵BE平分∠ABC,DE平分∠ADC, ∴∠EBA=∠ABC=,∠EDC=∠ADC=, ∴∠BED=180°﹣∠EBA+∠EDC=180°﹣. 答:∠BED的度数为180°﹣. 【点睛】 本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质. 二十四、解答题 24.(1)∠A+∠C=90°;(2)①见解析;②105° 【分析】 (1)根据平行线的性质以及直角三角形的性质进行证明即可; (2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥ 解析:(1)∠A+∠C=90°;(2)①见解析;②105° 【分析】 (1)根据平行线的性质以及直角三角形的性质进行证明即可; (2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得2α+β+3α+3α+β=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°. 【详解】 解:(1)如图1,AM与BC的交点记作点O, ∵AM∥CN, ∴∠C=∠AOB, ∵AB⊥BC, ∴∠A+∠AOB=90°, ∴∠A+∠C=90°; (2)①如图2,过点B作BG∥DM, ∵BD⊥AM, ∴DB⊥BG, ∴∠DBG=90°, ∴∠ABD+∠ABG=90°, ∵AB⊥BC, ∴∠CBG+∠ABG=90°, ∴∠ABD=∠CBG, ∵AM∥CN,BG∥DM, ∴∠C=∠CBG, ∠ABD=∠C; ②如图3,过点B作BG∥DM, ∵BF平分∠DBC,BE平分∠ABD, ∴∠DBF=∠CBF,∠DBE=∠ABE, 由(2)知∠ABD=∠CBG, ∴∠ABF=∠GBF, 设∠DBE=α,∠ABF=β, 则∠ABE=α,∠ABD=2α=∠CBG, ∠GBF=∠AFB=β, ∠BFC=3∠DBE=3α, ∴∠AFC=3α+β, ∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°, ∴∠FCB=∠AFC=3α+β, △BCF中,由∠CBF+∠BFC+∠BCF=180°得: 2α+β+3α+3α+β=180°, ∵AB⊥BC, ∴β+β+2α=90°, ∴α=15°, ∴∠ABE=15°, ∴∠EBC=∠ABE+∠ABC=15°+90°=105°. 【点睛】 本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用. 二十五、解答题 25.(1)50°;(2)①见解析;②见解析;(3)360°. 【分析】 (1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解; (2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′ 解析:(1)50°;(2)①见解析;②见解析;(3)360°. 【分析】 (1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解; (2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,由两个平角∠AEB和∠ADC得:∠1+∠2等于360°与四个折叠角的差,化简得结果; ②利用两次外角定理得出结论; (3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解. 【详解】 解:(1)∵,, ∴∠A′=∠A=180°-(65°+70°)=45°, ∴∠A′ED+∠A′DE =180°-∠A′=135°, ∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE)=360°-310°=50°; (2)①,理由如下 由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED, ∵∠AEB+∠ADC=360°, ∴∠1+∠2=360°-∠ADE-∠A′DE-∠AED-∠A′ED=360°-2∠ADE-2∠AED, ∴∠1+∠2=2(180°-∠ADE-∠AED)=2∠A; ②,理由如下: ∵是的一个外角 ∴. ∵是的一个外角 ∴ 又∵ ∴ (3)如图 由题意知, ∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A') 又∵∠B=∠B',∠C=∠C',∠A=∠A', ∠A+∠B+∠C=180°, ∴∠1+∠2+∠3+∠4+∠5+∠6=360°. 【点睛】 题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年人教版 中学 年级 下册 数学 期末 试题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文