人教版中学七年级下册数学期末复习含解析.doc
《人教版中学七年级下册数学期末复习含解析.doc》由会员分享,可在线阅读,更多相关《人教版中学七年级下册数学期末复习含解析.doc(25页珍藏版)》请在咨信网上搜索。
人教版中学七年级下册数学期末复习含解析 一、选择题 1.如图,直线a,b,c被射线l和m所截,则下列关系正确的是( ) A.∠1与∠2是对顶角 B.∠1与∠3是同旁内角 C.∠3与∠4是同位角 D.∠2与∠3是内错角 2.春意盎然,在婺外校园里下列哪种运动不属于平移( ) A.树枝随着春风摇曳 B.值日学生拉动可移动黑板 C.行政楼电梯的升降 D.晚自修后学生两列队伍整齐排列笔直前行 3.在平面直角坐标系中位于第二象限的点是( ) A. B. C. D. 4.下列命题是假命题的是( ) A.同位角相等,两直线平行 B.三角形的一个外角等于与它不相邻的两个内角的和 C.平行于同一条直线的两条直线平行 D.平面内,到一个角两边距离相等的点在这个角的平分线上 5.如图,已知直线AB,CD被直线AC所截,AB∥CD,E是平面内CD上方的一点(点E不在直线AB,CD,AC上),设∠BAE=,∠DCE=.下列各式:①+,②﹣,③﹣,④180°﹣﹣,⑤360°﹣﹣中,∠AEC的度数可能是( ) A.①②③ B.①②④⑤ C.①②③⑤ D.①②③④⑤ 6.下列说法正确的是( ) A.9的立方根是3 B.算术平方根等于它本身的数一定是1 C.﹣2是4的一个平方根 D.的算术平方根是2 7.如图,AB∥CD,直线EF分别交AB、CD于点E、F,FH平分∠EFD,若∠1=110°,则∠2的度数为( ) A.45° B.40° C.55° D.35° 8.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P1,P2,P3,…均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2021的坐标为( ) A.(﹣505,﹣505) B.(﹣505,506) C.(506,506) D.(505,﹣505) 九、填空题 9.的算术平方根是___. 十、填空题 10.已知点P(3,﹣1),则点P关于x轴对称的点Q_____. 十一、填空题 11.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,若△ABC的面积为15,DE=3,AB=6,则AC的长是 _______ 十二、填空题 12.如图,直线,,,则________. 十三、填空题 13.如图,把一张长方形纸片沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若,则____________,____________. 十四、填空题 14.对于有理数a,b,规定一种新运算:a※b=ab+b,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a※b=b※a,则a=b;③方程(x﹣4)※3=6的解为x=5;④(a※b)※c=a※(b※c).其中正确的是_____(把所有正确的序号都填上). 十五、填空题 15.,则在第_____象限. 十六、填空题 16.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹的反射角等于入射角(反射前后的线与边的夹角相等),当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为Pn,则点P2021的坐标为______. 十七、解答题 17.计算题: (1); (2) 十八、解答题 18.求下列各式中x的值: (1)(x+1)3﹣27=0 (2)(2x﹣1)2﹣25=0 十九、解答题 19.阅读下列推理过程,在括号中填写理由. 已知:如图,点、分别是线段、上的点,平分,,,交于点. 求证:平分. 证明:平分(已知) ( ) (已知) ( ) ( ) (等量代换) ( ) ( ) ( ) ( ) 平分( ) 二十、解答题 20.如图①,在平面直角坐标系中,点、在轴上,,,. (1)写出点、、的坐标. (2)如图②,过点作交轴于点,求的大小. (3)如图③,在图②中,作、分别平分、,求的度数. 二十一、解答题 21.阅读下面的文字,解答问题. 大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗? 事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分. 请解答:(1)若的整数部分为,小数部分为,求的值. (2)已知:,其中是整数,且,求的值. 二十二、解答题 22.如图,用两个面积为的小正方形拼成一个大的正方形. (1)则大正方形的边长是 ; (2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为,且面积为? 二十三、解答题 23.如图,∠EBF=50°,点C是∠EBF的边BF上一点.动点A从点B出发在∠EBF的边BE上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线AD∥BC. (1)在动点A运动的过程中, (填“是”或“否”)存在某一时刻,使得AD平分∠EAC? (2)假设存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之间有何数量关系?并请说明理由; (3)当AC⊥BC时,直接写出∠BAC的度数和此时AD与AC之间的位置关系. 二十四、解答题 24.如图1,E点在BC上,∠A=∠D,AB∥CD. (1)直接写出∠ACB和∠BED的数量关系 ; (2)如图2,BG平分∠ABE,与∠CDE的邻补角∠EDF的平分线交于H点.若∠E比∠H大60°,求∠E; (3)保持(2)中所求的∠E不变,如图3,BM平分∠ABE的邻补角∠EBK,DN平分∠CDE,作BP∥DN,则∠PBM的度数是否改变?若不变,请求值;若改变,请说理由. 二十五、解答题 25.如图,在中,与的角平分线交于点. (1)若,则 ; (2)若,则 ; (3)若,与的角平分线交于点,的平分线与的平分线交于点,,的平分线与的平分线交于点,则 . 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据对顶角、邻补角、同位角、内错角的定义分别分析即可. 【详解】 解:A、∠1与∠2是邻补角,故原题说法错误; B、∠1与∠3不是同旁内角,故原题说法错误; C、∠3与∠4是同位角,故原题说法正确; D、∠2与∠3不是内错角,故原题说法错误; 故选:C. 【点睛】 此题主要考查了对顶角、邻补角、内错角和同位角,解题的关键是掌握对顶角、邻补角、内错角和同位角的定义. 2.A 【分析】 根据平移的特点可得答案. 【详解】 解:A、树枝随着春风摇曳是旋转运动; B、值日学生拉动可移动黑板是平移运动; C、行政楼电梯的升降是平移运动; D、晚自修后学生两列队伍整齐排列笔直 解析:A 【分析】 根据平移的特点可得答案. 【详解】 解:A、树枝随着春风摇曳是旋转运动; B、值日学生拉动可移动黑板是平移运动; C、行政楼电梯的升降是平移运动; D、晚自修后学生两列队伍整齐排列笔直前行是平移运动; 故选A. 【点睛】 此题主要考查了生活中的平移现象,关键是掌握平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等. 3.B 【分析】 第二象限的点的横坐标小于0,纵坐标大于0,据此解答即可. 【详解】 解:根据第二象限的点的坐标的特征: 横坐标符号为负,纵坐标符号为正, 各选项中只有B(-2,3)符合, 故选:B. 【点睛】 本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.D 【分析】 利用平行线的判定、三角形的外角的性质、角平分线的判定等知识分别判断后即可确定正确的选项. 【详解】 解:A、同位角相等,两直线平行,正确,是真命题,不符合题意; B、三角形的一个外角等于与它不相邻的两个内角的和,正确,是真命题,不符合题意; C、平行于同一条直线的两条直线平行,正确,是真命题,不符合题意; D、角的内部,到一个角两边距离相等的点在这个角的平分线上,故原命题错误,是假命题,符合题意; 故选:D. 【点睛】 考查了命题与定理的知识,解题的关键是了解平行线的判定、三角形的外角的性质、角平分线的判定等知识,难度不大. 5.C 【分析】 根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可. 【详解】 解:(1)如图1,由AB∥CD,可得∠AOC=∠DCE1=, ∵∠AOC=∠BAE1+∠AE1C, ∴∠AE1C=﹣. (2)如图2,过E2作AB平行线,则由AB∥CD, 可得∠1=∠BAE2=,∠2=∠DCE2=, ∴∠AE2C=+. (3)如图3,由AB∥CD,可得∠BOE3=∠DCE3=, ∵∠BAE3=∠BOE3+∠AE3C, ∴∠AE3C=﹣. (4)如图4,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°, ∴∠AE4C=360°﹣﹣. 综上所述,∠AEC的度数可能是﹣,+,﹣,360°﹣﹣. 故选:C. 【点睛】 本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等. 6.C 【解析】 【分析】 利用立方根、平方根和算术平方根的定义进行判断即可. 【详解】 解:9的立方根是,故A项错误; 算术平方根等于它本身的数是1和0,故B项错误; ﹣2是4的一个平方根,故C项正确; 的算术平方根是,故D项错误; 故选C. 【点睛】 本题考查了平方根、算术平方根和立方根,熟练掌握各自的定义是解题的关键. 7.D 【分析】 根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补求出∠DFE,然后根据角平分线的定义求出∠DFH,再根据两直线平行,内错角相等解答. 【详解】 解:∵∠1=110°, ∴∠3=∠1=110°, ∵AB∥CD, ∴∠DFE=180°-∠3=180°-110°=70°, ∵HF平分∠EFD, ∴∠DFH=∠DFE=×70°=35°, ∵AB∥CD, ∴∠2=∠DFH=35°. 故选:D. 【点睛】 本题考查了平行线的性质,角平分线的定义,对顶角相等的性质,是基础题,熟记各性质并准确识图是解题的关键. 8.A 【分析】 先分别求出点的坐标,再归纳类推出一般规律即可得. 【详解】 解:由题意得:点的坐标为,即, 点的坐标为,即, 点的坐标为,即, 归纳类推得:点的坐标为,其中为正整数, , 点的坐标为, 解析:A 【分析】 先分别求出点的坐标,再归纳类推出一般规律即可得. 【详解】 解:由题意得:点的坐标为,即, 点的坐标为,即, 点的坐标为,即, 归纳类推得:点的坐标为,其中为正整数, , 点的坐标为, 故选:A. 【点睛】 本题考查了点坐标的规律探索,正确归纳类推出一般规律是解题关键. 九、填空题 9.【分析】 直接利用算术平方根的定义计算得出答案. 【详解】 解:的算术平方根是:. 故答案为:. 【点睛】 本题主要考查了算术平方根,正确掌握相关定义是解题关键. 解析: 【分析】 直接利用算术平方根的定义计算得出答案. 【详解】 解:的算术平方根是:. 故答案为:. 【点睛】 本题主要考查了算术平方根,正确掌握相关定义是解题关键. 十、填空题 10.(3,1) 【分析】 根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可. 【详解】 解:∵点P(3,﹣1) ∴点P关于x轴对称的点Q(3,1) 故答案为(3,1). 【点睛】 本题主要 解析:(3,1) 【分析】 根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可. 【详解】 解:∵点P(3,﹣1) ∴点P关于x轴对称的点Q(3,1) 故答案为(3,1). 【点睛】 本题主要考查了平面直角坐标系点关于坐标轴的对称关系,熟记对称的特点是解题的关键. 十一、填空题 11.4 【分析】 过点D作DF⊥AC,则由AD是△ABC的角平分线,DF⊥AC, DE⊥AB,可以得到DE=DF,可由三角形的面积的,,进而解得AC的长. 【详解】 过点D作DF⊥AC ∵AD是△AB 解析:4 【分析】 过点D作DF⊥AC,则由AD是△ABC的角平分线,DF⊥AC, DE⊥AB,可以得到DE=DF,可由三角形的面积的,,进而解得AC的长. 【详解】 过点D作DF⊥AC ∵AD是△ABC的角平分线,DF⊥AC, DE⊥AB, ∴DE=DF, 又三角形的面积的, 即, 解得AC=4 【点睛】 主要考查了角平分线的性质,三角形的面积,掌握角平分线的性质及三角形的面积是解题的关键. 十二、填空题 12.120°. 【分析】 延长AB交直线b于点E,可得,则 ,再由,可得 ,即可求解. 【详解】 解:如图,延长AB交直线b于点E, ∵, ∴, ∴ , ∵,, ∴ , ∴. 故答案为: . 【点睛】 解析:120°. 【分析】 延长AB交直线b于点E,可得,则 ,再由,可得 ,即可求解. 【详解】 解:如图,延长AB交直线b于点E, ∵, ∴, ∴ , ∵,, ∴ , ∴. 故答案为: . 【点睛】 本题主要考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键. 十三、填空题 13.68°; 112°. 【分析】 首先根据折叠的性质和平行线的性质求∠FED的度数,然后根据平角的定义求出∠1的度数,最后根据平行线的性质求出∠2的度数. 【详解】 解:∵延折叠得到, 解析:68°; 112°. 【分析】 首先根据折叠的性质和平行线的性质求∠FED的度数,然后根据平角的定义求出∠1的度数,最后根据平行线的性质求出∠2的度数. 【详解】 解:∵延折叠得到, ∴, ∵,, ∴(两直线平行,内错角相等), ∴, ∴, 又∵, ∴, ∴. 综上,. 故答案为:68°;112°. 【点睛】 本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图是解题的关键. 十四、填空题 14.①③ 【分析】 题目中各式利用已知的新定义公式计算得到结果,即可做出判断. 【详解】 (−3)※4=−3×4+4=−8,所以①正确; a※b=ab+b,b※a=ab+a,若 a=b ,两式相等,若 解析:①③ 【分析】 题目中各式利用已知的新定义公式计算得到结果,即可做出判断. 【详解】 (−3)※4=−3×4+4=−8,所以①正确; a※b=ab+b,b※a=ab+a,若 a=b ,两式相等,若 a≠b ,则两式不相等,所以②错误; 方程(x−4) )※3=6化为3(x−4)+3=6,解得x=5,所以③正确; 左边=(a※b) ※c=(a×b+b) )※c=(a×b+b)·c+c=abc+bc+c 右边=a※(b※c)=a※(b×c+c)=a(b×c+c) +(b×c+c)=abc+ac+bc+c2 两式不相等,所以④错误. 综上所述,正确的说法有①③. 故答案为①③. 【点睛】 有理数的混合运算, 解一元一次方程,属于定义新运算专题,解决本题的关键突破口是准确理解新定义.本题主要考查学生综合分析能力、运算能力. 十五、填空题 15.二 【分析】 根据非负数的性质列方程求出a、b的值,再根据各象限内点的坐标特征解答. 【详解】 解:由题意得,a+2=0,b-6=0, 解得a=-2,b=6, 所以,点(-2,6)在第二象限; 故答 解析:二 【分析】 根据非负数的性质列方程求出a、b的值,再根据各象限内点的坐标特征解答. 【详解】 解:由题意得,a+2=0,b-6=0, 解得a=-2,b=6, 所以,点(-2,6)在第二象限; 故答案为:二 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 十六、填空题 16.(4,3) 【分析】 按照反弹规律依次画图即可. 【详解】 解:如图: 根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点 解析:(4,3) 【分析】 按照反弹规律依次画图即可. 【详解】 解:如图: 根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点(0,1)之后,再循环反射,每6次一循环, 2021÷6=336…5, 即点P2021的坐标是(4,3). 故答案为:(4,3). 【点睛】 本题考查了生活中的轴对称现象,点的坐标.解题的关键是能够正确找到循环数值,从而得到规律. 十七、解答题 17.(1);(2) 【分析】 (1)先计算被开方数,再利用算术平方根的含义求解即可得到答案; (2)先计算括号内的乘方,再计算括号内的减法,把除法转化为乘法,最后计算乘法运算即可得到答案. 【详解】 解 解析:(1);(2) 【分析】 (1)先计算被开方数,再利用算术平方根的含义求解即可得到答案; (2)先计算括号内的乘方,再计算括号内的减法,把除法转化为乘法,最后计算乘法运算即可得到答案. 【详解】 解:(1), (2) 【点睛】 本题考查的是算术平方根的含义,含乘方的有理数的混合运算,掌握以上知识是解题的关键. 十八、解答题 18.(1)x=2;(2)x=3或x=-2. 【分析】 (1)根据立方根的定义进行求解即可; (2)根据平方根的定义进行求解,即可得出答案. 【详解】 解:(1)(x+1)3-27=0, (x+1)3=2 解析:(1)x=2;(2)x=3或x=-2. 【分析】 (1)根据立方根的定义进行求解即可; (2)根据平方根的定义进行求解,即可得出答案. 【详解】 解:(1)(x+1)3-27=0, (x+1)3=27, x+1=3, x=2; (2)(2x-1)2-25=0, (2x-1)2=25, 2x-1=±5, x=3或x=-2. 【点睛】 本题考查了立方根和平方根,熟练掌握立方根和平方根的定义是解题的关键. 十九、解答题 19.见解析 【分析】 根据平行线的性质,角平分线的定义填写理由即可. 【详解】 证明:平分(已知) (角平分线的定义) (已知) (同位角相等,两直线平行) (两直线平行,内错角相等) (等量代换) ( 解析:见解析 【分析】 根据平行线的性质,角平分线的定义填写理由即可. 【详解】 证明:平分(已知) (角平分线的定义) (已知) (同位角相等,两直线平行) (两直线平行,内错角相等) (等量代换) (已知) (两直线平行,同位角相等) (两直线平行,内错角相等) (等量代换) 平分(角平分线的定义) 【点睛】 本题考查了角平分线的定义,平行线的性质与判定,掌握平行线的性质与判定是解题的关键. 二十、解答题 20.(1),,;(2)90°;(3)45° 【分析】 (1)根据图形和平面直角坐标系,可直接得出答案; (2)根据两直线平行,内错角相等可得,则∠; (3)根据角平分线的定义可得,过点作,然后根据平行 解析:(1),,;(2)90°;(3)45° 【分析】 (1)根据图形和平面直角坐标系,可直接得出答案; (2)根据两直线平行,内错角相等可得,则∠; (3)根据角平分线的定义可得,过点作,然后根据平行线的性质得出, . 【详解】 解:(1)依题意得:,,; (2)∵, ∴, ∴; (3)∵, ∴, ∵,分别平分,, ∴ , 过点作, 则,, ∴. 【点睛】 本题考查了坐标与图形的性质,平行线的性质,熟记以上性质,并求出A,B,C的坐标是解题的关键,(3)作出平行线是解题的关键. 二十一、解答题 21.(1)6;(2)12− 【分析】 (1)先求出的取值范围即可求出a和b的值,然后代入求值即可; (2)先求出的取值范围,即可求出10+的整数部分和小数部分,从而求出x和y,从而求出结论. 【详解】 解析:(1)6;(2)12− 【分析】 (1)先求出的取值范围即可求出a和b的值,然后代入求值即可; (2)先求出的取值范围,即可求出10+的整数部分和小数部分,从而求出x和y,从而求出结论. 【详解】 解:(1)∵ 3<<4, ∴ a=3,b=-3 ∴ =+-3- =6 (2) ∵1<<2. 又∵10+=x+y,其中x是整数,且0<y<1, ∴x=11, y=−1. ∴x−y=11−(−1)=12− 【点睛】 此题考查的是求无理数的整数部分、小数部分和实数的运算,掌握求无理数的取值范围是解决此题的关键. 二十二、解答题 22.(1);(2)无法裁出这样的长方形. 【分析】 (1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解; (2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小 解析:(1);(2)无法裁出这样的长方形. 【分析】 (1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解; (2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小即可. 【详解】 解:(1)由题意得,大正方形的面积为200+200=400cm2, ∴边长为: ; 根据题意设长方形长为 cm,宽为 cm, 由题: 则 长为 无法裁出这样的长方形. 【点睛】 本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键. 二十三、解答题 23.(1)是;(2)∠B=∠ACB,证明见解析;(3)∠BAC=40°,AC⊥AD. 【分析】 (1)要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD 解析:(1)是;(2)∠B=∠ACB,证明见解析;(3)∠BAC=40°,AC⊥AD. 【分析】 (1)要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则当∠ACB=∠B时,有AD平分∠EAC; (2)根据角平分线可得∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则有∠ACB=∠B; (3)由AC⊥BC,有∠ACB=90°,则可求∠BAC=40°,由平行线的性质可得AC⊥AD. 【详解】 解:(1)是,理由如下: 要使AD平分∠EAC, 则要求∠EAD=∠CAD, 由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD, 则当∠ACB=∠B时,有AD平分∠EAC; 故答案为:是; (2)∠B=∠ACB,理由如下: ∵AD平分∠EAC, ∴∠EAD=∠CAD, ∵AD∥BC, ∴∠B=∠EAD,∠ACB=∠CAD, ∴∠B=∠ACB. (3)∵AC⊥BC, ∴∠ACB=90°, ∵∠EBF=50°, ∴∠BAC=40°, ∵AD∥BC, ∴AD⊥AC. 【点睛】 此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键. 二十四、解答题 24.(1)∠ACB+∠BED=180°;(2)100°;(3)40° 【分析】 (1)如图1,延长DE交AB于点F,根据ABCD可得∠DFB=∠D,则∠DFB=∠A,可得ACDF,根据平行线的性质得∠A 解析:(1)∠ACB+∠BED=180°;(2)100°;(3)40° 【分析】 (1)如图1,延长DE交AB于点F,根据ABCD可得∠DFB=∠D,则∠DFB=∠A,可得ACDF,根据平行线的性质得∠ACB+∠CEF=180°,由对顶角相等可得结论; (2)如图2,作EMCD,HNCD,根据ABCD,可得ABEMHNCD,根据平行线的性质得角之间的关系,再根据∠DEB比∠DHB大60°,列出等式即可求∠DEB的度数; (3)如图3,过点E作ESCD,设直线DF和直线BP相交于点G,根据平行线的性质和角平分线定义可求∠PBM的度数. 【详解】 解:(1)如图1,延长交于点, , , , , , , , 故答案为:; (2)如图2,作,, , , ,, 平分, , , , , , , 平分, , , , , 设, , 比大, , , 解得. 的度数为; (3)的度数不变,理由如下: 如图3,过点作,设直线和直线相交于点, 平分,平分, , , ,, , , , , 由(2)可知:, , , , , , . 【点睛】 本题考查了平行线的性质,解决本题的关键是掌握平行线的性质. 二十五、解答题 25.(1)110(2)(90 +n)(3)×90°+n° 【分析】 (1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可; (2)根据BO、CO分别是∠ABC与∠ACB的角平 解析:(1)110(2)(90 +n)(3)×90°+n° 【分析】 (1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可; (2)根据BO、CO分别是∠ABC与∠ACB的角平分线,用n°的代数式表示出∠OBC与∠OCB的和,再根据三角形的内角和定理求出∠BOC的度数; (3)根据规律直接计算即可. 【详解】 解:(1)∵∠A=40°, ∴∠ABC+∠ACB=140°, ∵点O是∠AB故答案为:110°;C与∠ACB的角平分线的交点, ∴∠OBC+∠OCB=70°, ∴∠BOC=110°. (2)∵∠A=n°, ∴∠ABC+∠ACB=180°-n°, ∵BO、CO分别是∠ABC与∠ACB的角平分线, ∴∠OBC+∠OCB=∠ABC+∠ACB =(∠ABC+∠ACB) =(180°﹣n°) =90°﹣n°, ∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+n°. 故答案为:(90+n); (3)由(2)得∠O=90°+n°, ∵∠ABO的平分线与∠ACO的平分线交于点O1, ∴∠O1BC=∠ABC,∠O1CB=∠ACB, ∴∠O1=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=×180°+n°, 同理,∠O2=×180°+n°, ∴∠On=×180°+ n°, ∴∠O2017=×180°+n°, 故答案为:×90°+n°. 【点睛】 本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180°.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 中学 年级 下册 数学 期末 复习 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文