人教版中学七7年级下册数学期末学业水平(附答案).doc
《人教版中学七7年级下册数学期末学业水平(附答案).doc》由会员分享,可在线阅读,更多相关《人教版中学七7年级下册数学期末学业水平(附答案).doc(25页珍藏版)》请在咨信网上搜索。
人教版中学七7年级下册数学期末学业水平(附答案) 一、选择题 1.下列说法正确的是() A.4的平方根是 B.16的平方根是 C.2是的算术平方根 D.是36的算术平方根 2.春意盎然,在婺外校园里下列哪种运动不属于平移( ) A.树枝随着春风摇曳 B.值日学生拉动可移动黑板 C.行政楼电梯的升降 D.晚自修后学生两列队伍整齐排列笔直前行 3.点(﹣4,2)所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列四个命题,①连接两点的线段叫做两点间的距离;②经过两点有一条直线,并且只有一条直线;③两点之间,线段最短;④线段的延长线与射线是同一条射线.其中说法正确的有( ) A.1个 B.2个 C.3个 D.4个 5.将两张长方形纸片按如图所示方式摆放,使其中一张长方形纸片的两个顶点恰好落在另一张长方形纸片的两条边上,则∠1+∠2的度数为( ) A.120° B.110° C.100° D.90° 6.下列说法中正确的是( ) ①1的平方根是1; ②5是25的算术平方根; ③(﹣4)2的平方根是﹣4; ④(﹣4)3的立方根是﹣4; ⑤0.01是0.1的一个平方根. A.①④ B.②④ C.②③ D.②⑤ 7.如图,将木条,与钉在一起,,,要使木条与平行,木条顺时针旋转的度数至少是( ) A. B. C. D. 8.在平面直角坐标系中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的幸运点.已知点A1的幸运点为A2,点A2的幸运点为A3,点A3的幸运点为A4,…,这样依次得到点A1,A2,A3,…,An.若点A1的坐标为(3,1),则点A2021的坐标为( ) A.(﹣3,1) B.(0,﹣2) C.(3,1) D.(0,4) 九、填空题 9.若=x,则x的值为______. 十、填空题 10.点关于轴对称的点的坐标为_________. 十一、填空题 11.如图,已知AD是ABC的角平分线,CE是ABC的高,∠BAC=60°,∠BCE=40°,则∠ADB=_____. 十二、填空题 12.如图,AB∥DE,AD⊥AB,AE平分∠BAC交BC于点F,如果∠CAD=24°,则∠E=___°. 十三、填空题 13.如图,将长方形ABCD沿DE折叠,使点C落在边AB上的点F处,若,则________° 十四、填空题 14.观察下列等式:1﹣=,2﹣=,3﹣=,4﹣=,…,根据你发现的规律,则第20个等式为_____. 十五、填空题 15.若点P在轴上,则点P的坐标为____. 十六、填空题 16.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹的反射角等于入射角(反射前后的线与边的夹角相等),当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为Pn,则点P2021的坐标为______. 十七、解答题 17.(1)计算: (2)计算: (3)计算: (4)计算: 十八、解答题 18.求下列各式中的值: (1); (2). 十九、解答题 19.如图,已知EF∥AD,试说明请将下面的说明过程填写完整. 解:EF∥AD,已知 ____________ 又,已知 ,______ ∥______,______ ______ 二十、解答题 20.如图,在平面直角坐标系中,的顶点都在格点上,点. (1)写出点,的坐标; (2)求的面积. 二十一、解答题 21.任意无理数都是由整数部分和小数部分构成的. 已知一个无理数a,它的整数部分是b,则它的小数部分可以表示为.例如:,即,显然的整数部分是2,小数部分是. 根据上面的材料,解决下列问题: (1)若的整数部分是m,的整数部分是n,求的值. (2)若的整数部分是,小数部分是y,求的值. 二十二、解答题 22.如图,用两个边长为15的小正方形拼成一个大的正方形, (1)求大正方形的边长? (2)若沿此大正方形边的方向剪出一个长方形,能否使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2? 二十三、解答题 23.如图1,已AB∥CD,∠C=∠A. (1)求证:AD∥BC; (2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究∠BAE,∠CDE,∠E之间的数量关系,并证明. (3)如图3,若∠C=90°,且点E在线段BC上,DF平分∠EDC,射线DF在∠EDC的内部,且交BC于点M,交AE延长线于点F,∠AED+∠AEC=180°, ①直接写出∠AED与∠FDC的数量关系: . ②点P在射线DA上,且满足∠DEP=2∠F,∠DEA﹣∠PEA=∠DEB,补全图形后,求∠EPD的度数 二十四、解答题 24.如图1,,E是、之间的一点. (1)判定,与之间的数量关系,并证明你的结论; (2)如图2,若、的两条平分线交于点F.直接写出与之间的数量关系; (3)将图2中的射线沿翻折交于点G得图3,若的余角等于的补角,求的大小. 二十五、解答题 25.(1)如图1,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度数; (2)如图2,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=α°,∠ABC=β°,求∠AEC的度数; (3)如图3,PQ⊥MN于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD平分∠BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由. 【参考答案】 一、选择题 1.B 解析:B 【分析】 根据平方根和算术平方根的定义判断即可. 【详解】 解:A.4的平方根是±2,故错误,不符合题意; B.的平方根是±4,故正确,符合题意; C.-4没有算术平方根,故错误,不符合题意; D.-6是36的一个平方根,故错误,不符合题意; 故选B. 【点睛】 本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断. 2.A 【分析】 根据平移的特点可得答案. 【详解】 解:A、树枝随着春风摇曳是旋转运动; B、值日学生拉动可移动黑板是平移运动; C、行政楼电梯的升降是平移运动; D、晚自修后学生两列队伍整齐排列笔直 解析:A 【分析】 根据平移的特点可得答案. 【详解】 解:A、树枝随着春风摇曳是旋转运动; B、值日学生拉动可移动黑板是平移运动; C、行政楼电梯的升降是平移运动; D、晚自修后学生两列队伍整齐排列笔直前行是平移运动; 故选A. 【点睛】 此题主要考查了生活中的平移现象,关键是掌握平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等. 3.B 【分析】 根据第二象限的点的横坐标是负数,纵坐标是正数解答. 【详解】 解:点(-4,2)所在的象限是第二象限. 故选:B. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B 【分析】 利用直线和射线的定义、以及线段的性质和两点之间距离意义,分别分析得出答案. 【详解】 解:①连接两点的线段长度叫做两点间的距离,故此选项错误. ②经过两点有一条直线,并且只有一条直线,故此选项正确. ③两点之间,线段最短,故此选项正确. ④线段的延长线是以B为端点延长出去的延长线部分,与射线不是同一条射线故此选项错误. 综上,②③正确. 故选:B. 【点睛】 本题考查了直线、射线、线段的性质和两点之间距离意义,解题的关键是准确理解定义. 5.D 【分析】 过E作EF∥CD,根据平行线的性质可得∠1=∠BEF,∠2=∠DEF, 再由∠BED=90°即可解答. 【详解】 解:过E作EF∥CD, ∵AB∥CD, ∴EF∥CD∥AB, ∴∠1=∠BEF,∠2=∠DEF, ∵∠BEF+∠DEF=∠BED=90°, ∴∠1+∠2=90°, 故选:D. 【点睛】 本题考查平行线的判定与性质,熟练掌握平行线的性质是解答的关键. 6.B 【分析】 根据平方根,算术平方根,立方根的概念进行分析,从而作出判断. 【详解】 解:1的平方根是±1,故说法①错误; 5是25的算术平方根,故说法②正确; (-4)2的平方根是±4,故说法③错误; (-4)3的立方根是-4,故说法④正确; 0.1是0.01的一个平方根,故说法⑤错误; 综上,②④正确, 故选:B. 【点睛】 本题考查了算术平方根,平方根,立方根的概念,理解相关定义,注意符号是解题关键. 7.B 【分析】 根据两直线平行同旁内角互补和对顶角相等,求出旋转后∠2的同旁内角的度数,然后利用对顶角相等旋转后∠1的度数,继而用旋转后∠1减去110°即可得到木条a旋转的度数. 【详解】 解:要使木条a与b平行, ∴旋转后∠1+∠2=180°, ∵∠2=50°, ∴旋转后∠1=180°﹣50°=130°, ∴当∠1需变为130 º, ∴木条a至少旋转:130º﹣110º=20º, 故选B. 【点睛】 本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等,在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角. 8.C 【分析】 根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可. 【详解】 解:∵A1的坐标为(3,1), ∴ 解析:C 【分析】 根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可. 【详解】 解:∵A1的坐标为(3,1), ∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1), …, 依此类推,每4个点为一个循环组依次循环, ∵2021÷4=505•••1, ∴点A2021的坐标与A1的坐标相同,为(3,1). 故选:C. 【点睛】 本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键. 九、填空题 9.0或1 【分析】 根据算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解. 【详解】 ∵02=0,12=1, ∴0的算术平方根为0,1的算术平方根 解析:0或1 【分析】 根据算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解. 【详解】 ∵02=0,12=1, ∴0的算术平方根为0,1的算术平方根为1. 故答案是:0或1. 【点睛】 考查了算术平方根的定义,解题关键是利用算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解. 十、填空题 10.【分析】 关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解. 【详解】 解:由点关于轴对称点的坐标为:, 故答案为. 【点睛】 本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握 解析: 【分析】 关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解. 【详解】 解:由点关于轴对称点的坐标为:, 故答案为. 【点睛】 本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键. 十一、填空题 11.100° 【分析】 根据AD是ABC的角平分线,CE是ABC的高,∠BAC=60°,可得∠BAD和∠CAD相等,都为30°,∠CEA=90°,从而求得∠ACE的度数,又因为∠BCE=40°,∠ADB 解析:100° 【分析】 根据AD是ABC的角平分线,CE是ABC的高,∠BAC=60°,可得∠BAD和∠CAD相等,都为30°,∠CEA=90°,从而求得∠ACE的度数,又因为∠BCE=40°,∠ADB=∠BCE+∠ACE+∠CAD,从而求得∠ADB的度数. 【详解】 解:∵AD是ABC的角平分线,∠BAC=60°. ∴∠BAD=∠CAD=∠BAC=30°, ∵CE是ABC的高, ∴∠CEA=90°. ∵∠CEA+∠BAC+∠ACE=180°. ∴∠ACE=30°. ∵∠ADB=∠BCE+∠ACE+∠CAD,∠BCE=40°. ∴∠ADB=40°+30°+30°=100°. 故答案为:100°. 【点睛】 本题考查三角形的内角和、角的平分线、三角形的一个外角等于和它不相邻的内角的和,关键是根据具体目中的信息,灵活变化,求出相应的问题的答案. 十二、填空题 12.33 【分析】 由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解. 【详解】 解:∵AD⊥AB, ∴∠BAD=90°, ∵∠C 解析:33 【分析】 由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解. 【详解】 解:∵AD⊥AB, ∴∠BAD=90°, ∵∠CAD=24°, ∴∠BAC=66°, ∵AE平分∠BAC, ∴∠BAE=∠CAE=33°, ∵AB∥DE, ∴∠E=∠BAE=33°, 故答案为33. 【点睛】 本题主要考查平行线的性质、角平分线的定义及垂线的定义,熟练掌握平行线的性质、角平分线的定义及垂线的定义是解题的关键. 十三、填空题 13.5 【分析】 根据翻折的性质,可得到∠DEC=∠FED,∠BEF与∠DEC、∠FED三者相加为180°,求出∠BEF的度数即可. 【详解】 解:∵△DFE是由△DCE折叠得到的, ∴∠DEC=∠FE 解析:5 【分析】 根据翻折的性质,可得到∠DEC=∠FED,∠BEF与∠DEC、∠FED三者相加为180°,求出∠BEF的度数即可. 【详解】 解:∵△DFE是由△DCE折叠得到的, ∴∠DEC=∠FED, 又∵∠EFB=45°,∠B=90°, ∴∠BEF=45°, ∴∠DEC=(180°-45°)=67.5°. 故答案为:67.5. 【点睛】 本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键. 十四、填空题 14.20﹣. 【分析】 观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案. 【详解】 观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为 等式右边的 解析:20﹣. 【分析】 观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案. 【详解】 观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为 等式右边的规律为:分子为,分母为 归纳类推得:第n个等式为(n为正整数) 当时,这个等式为,即 故答案为:. 【点睛】 本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键. 十五、填空题 15.(4,0). 【分析】 根据x轴上点的纵坐标为0列方程求出m的值,再求解即可. 【详解】 ∵点P(m+3,m-1)在x轴上, ∴m-1=0, 解得m=1, 所以,m+3=1+3=4, 所以,点P的坐 解析:(4,0). 【分析】 根据x轴上点的纵坐标为0列方程求出m的值,再求解即可. 【详解】 ∵点P(m+3,m-1)在x轴上, ∴m-1=0, 解得m=1, 所以,m+3=1+3=4, 所以,点P的坐标为(4,0). 故答案为:(4,0). 【点睛】 本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键. 十六、填空题 16.(4,3) 【分析】 按照反弹规律依次画图即可. 【详解】 解:如图: 根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点 解析:(4,3) 【分析】 按照反弹规律依次画图即可. 【详解】 解:如图: 根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点(0,1)之后,再循环反射,每6次一循环, 2021÷6=336…5, 即点P2021的坐标是(4,3). 故答案为:(4,3). 【点睛】 本题考查了生活中的轴对称现象,点的坐标.解题的关键是能够正确找到循环数值,从而得到规律. 十七、解答题 17.(1);(2);(3);(4) 【分析】 (1)根据算术平方根的求法计算即可; (2)先化简绝对值,再合并即可; (3)分别进行二次根式的化简、开立方,然后合并求解; (4)先化简绝对值和二次根式, 解析:(1);(2);(3);(4) 【分析】 (1)根据算术平方根的求法计算即可; (2)先化简绝对值,再合并即可; (3)分别进行二次根式的化简、开立方,然后合并求解; (4)先化简绝对值和二次根式,再合并即可. 【详解】 解:(1) (2) (3) (4) 【点睛】 本题考查了实数的运算,涉及了二次根式的化简、绝对值的化简、开立方等知识. 十八、解答题 18.(1);(2) 【分析】 (1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解; (2)方程整理后,将一个数开立方后,只得到一个解. 【详解】 解:(1)移项得,, 解析:(1);(2) 【分析】 (1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解; (2)方程整理后,将一个数开立方后,只得到一个解. 【详解】 解:(1)移项得,, 开方得,; (2)移项得,, 合并同类项得,, 开立方得,. 【点睛】 此题考查了立方根,以及平方根,熟练掌握各自的性质是解题关键. 十九、解答题 19.;两直线平行,同位角相等 ;等量代换;;内错角相等,两直线平行;两直线平行,同旁内角互补 【分析】 根据平行线的判定和性质解答即可. 【详解】 解:EF∥AD,(已知) (两直线平行,同位角相等) 解析: ;两直线平行,同位角相等 ;等量代换;;内错角相等,两直线平行;两直线平行,同旁内角互补 【分析】 根据平行线的判定和性质解答即可. 【详解】 解:EF∥AD,(已知) (两直线平行,同位角相等) 又,(已知) ,(等量代换) ,(内错角相等,两直线平行) (两直线平行,同旁内角互补) 故答案为: ;两直线平行,同位角相等 ;等量代换;;内错角相等,两直线平行;两直线平行,同旁内角互补 【点睛】 本题考查平行线的判定与性质,熟记判定定理和性质定理是解题的关键. 二十、解答题 20.(1),;(2)9 【分析】 (1)根据坐标的特性以及C点坐标,直接可以得出A、B的坐标 (2)利用面积的和差求解:三角形ABC的面积等于一个长方形的面积减去三个直角三角形的面积. 【详解】 解:( 解析:(1),;(2)9 【分析】 (1)根据坐标的特性以及C点坐标,直接可以得出A、B的坐标 (2)利用面积的和差求解:三角形ABC的面积等于一个长方形的面积减去三个直角三角形的面积. 【详解】 解:(1), (2) 【点睛】 本题考查了坐标上的点以及求坐标上图形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键. 二十一、解答题 21.(1)0;(2) 【分析】 (1)仿照题例,可直接求出的整数部分和小数部分,代入计算; (2)先求出的整数部分,再得到的整数部分和小数部分,代入计算. 【详解】 解:(1)∵, ∴, ∴的整数部分是 解析:(1)0;(2) 【分析】 (1)仿照题例,可直接求出的整数部分和小数部分,代入计算; (2)先求出的整数部分,再得到的整数部分和小数部分,代入计算. 【详解】 解:(1)∵, ∴, ∴的整数部分是3,即m=3, ∵, ∴, ∴的整数部分是2,即n=2, ∴==0; (2)∵, ∴, ∴的整数部分是10,即2x=10, ∴x=5, ∴的小数部分是=, 即y=, ∴==. 【点睛】 本题考查了二次根式的整数和小数部分.看懂题例并熟练运用是解决本题的关键. 二十二、解答题 22.(1)30;(2)不能. 【解析】 【分析】 (1)根据已知正方形的面积求出大正方形的面积,即可求出边长; (2)先求出长方形的边长,再判断即可. 【详解】 解:(1)∵大正方形的面积是: ∴大正 解析:(1)30;(2)不能. 【解析】 【分析】 (1)根据已知正方形的面积求出大正方形的面积,即可求出边长; (2)先求出长方形的边长,再判断即可. 【详解】 解:(1)∵大正方形的面积是: ∴大正方形的边长是: =30; (2)设长方形纸片的长为4xcm,宽为3xcm, 则4x•3x=720, 解得:x= , 4x= = >30, 所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2. 故答案为(1)30;(2)不能. 【点睛】 本题考查算术平方根,解题的关键是能根据题意列出算式. 二十三、解答题 23.(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50° 【分析】 (1)根据平行线的性质及判定可得结论; (2)过点E作EF∥AB,根 解析:(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50° 【分析】 (1)根据平行线的性质及判定可得结论; (2)过点E作EF∥AB,根据平行线的性质得AB∥CD∥EF,然后由两直线平行内错角相等可得结论; (3)①根据∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可导出角的关系; ②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-∠PEA=∠DEB,求出∠AED=50°,即可得出∠EPD的度数. 【详解】 解:(1)证明:AB∥CD, ∴∠A+∠D=180°, ∵∠C=∠A, ∴∠C+∠D=180°, ∴AD∥BC; (2)∠BAE+∠CDE=∠AED,理由如下: 如图2,过点E作EF∥AB, ∵AB∥CD ∴AB∥CD∥EF ∴∠BAE=∠AEF,∠CDE=∠DEF 即∠FEA+∠FED=∠CDE+∠BAE ∴∠BAE+∠CDE=∠AED; (3)①∠AED-∠FDC=45°; ∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°, ∴∠AEC=∠DEC+∠AEB, ∴∠AED=∠AEB, ∵DF平分∠EDC ∠DEC=2∠FDC ∴∠DEC=90°-2∠FDC, ∴2∠AED+(90°-2∠FDC)=180°, ∴∠AED-∠FDC=45°, 故答案为:∠AED-∠FDC=45°; ②如图3, ∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°, ∴∠F=45°, ∴∠DEP=2∠F=90°, ∵∠DEA-∠PEA=∠DEB=∠DEA, ∴∠PEA=∠AED, ∴∠DEP=∠PEA+∠AED=∠AED=90°, ∴∠AED=70°, ∵∠AED+∠AEC=180°, ∴∠DEC+2∠AED=180°, ∴∠DEC=40°, ∵AD∥BC, ∴∠ADE=∠DEC=40°, 在△PDE中,∠EPD=180°-∠DEP-∠AED=50°, 即∠EPD=50°. 【点睛】 本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键. 二十四、解答题 24.(1),见解析;(2);(3)60° 【分析】 (1)作EF//AB,如图1,则EF//CD,利用平行线的性质得∠1=∠BAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED; (2)如图2, 解析:(1),见解析;(2);(3)60° 【分析】 (1)作EF//AB,如图1,则EF//CD,利用平行线的性质得∠1=∠BAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED; (2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF,根据角平分线的定义得到∠BAF=∠BAE,∠CDF=∠CDE,则∠AFD=(∠BAE+∠CDE),加上(1)的结论得到∠AFD=∠AED; (3)由(1)的结论得∠AGD=∠BAF+∠CDG,利用折叠性质得∠CDG=4∠CDF,再利用等量代换得到∠AGD=2∠AED-∠BAE,加上90°-∠AGD=180°-2∠AED,从而可计算出∠BAE的度数. 【详解】 解:(1) 理由如下: 作,如图1, , . ,, ; (2)如图2,由(1)的结论得, 、的两条平分线交于点F, ,, , , ; (3)由(1)的结论得, 而射线沿翻折交于点G, , , , , . 【点睛】 本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等. 二十五、解答题 25.(1)∠E=45°;(2)∠E=;(3)不变化, 【分析】 (1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠ 解析:(1)∠E=45°;(2)∠E=;(3)不变化, 【分析】 (1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,则可得∠E= (∠D+∠B),继而求得答案; (2)首先延长BC交AD于点F,由三角形外角的性质,可得∠BCD=∠B+∠BAD+∠D,又由角平分线的性质,即可求得答案. (3)由三角形内角和定理,可得,利用角平分线的性质与三角形的外角的性质可得答案. 【详解】 解:(1)∵CE平分∠BCD,AE平分∠BAD ∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD, ∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB, ∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB ∴∠D+∠B=2∠E, ∴∠E=(∠D+∠B), ∵∠ADC=50°,∠ABC=40°, ∴∠AEC= ×(50°+40°)=45°; (2)延长BC交AD于点F, ∵∠BFD=∠B+∠BAD, ∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D, ∵CE平分∠BCD,AE平分∠BAD ∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD, ∵∠E+∠ECB=∠B+∠EAB, ∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-∠BCD =∠B+∠BAE-(∠B+∠BAD+∠D) = (∠B-∠D), ∠ADC=α°,∠ABC=β°, 即∠AEC= (3)的值不发生变化, 理由如下: 如图,记与交于,与交于, ①, ②, ①-②得: AD平分∠BAC, 【点睛】 此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义.此题难度较大,注意掌握整体思想与数形结合思想的应用.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 中学 年级 下册 数学 期末 学业 水平 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文