人教版中学七年级数学下册期末质量检测试卷及答案.doc
《人教版中学七年级数学下册期末质量检测试卷及答案.doc》由会员分享,可在线阅读,更多相关《人教版中学七年级数学下册期末质量检测试卷及答案.doc(23页珍藏版)》请在咨信网上搜索。
人教版中学七年级数学下册期末质量检测试卷及答案 一、选择题 1.如图,已知两直线l1与l2被第三条直线l3所截,则下列说法中不正确的是( ) A.∠2与∠4是邻补角 B.∠2与∠3是对顶角 C.∠1与∠4是内错角 D.∠1与∠2是同位角 2.在下面的四幅图案中,能通过图案(1)平移得到的是( ) A. B. C. D. 3.在平面直角坐标系中,点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列命题中,是假命题的是( ) A.经过一个已知点能画一条且只能画一条直线与已知直线平行 B.从直线外一点到这条直线的垂线段的长度叫做这点到直线的距离 C.在同一平面内,一条直线的垂线可以画无数条 D.连接直线外一点与直线上各点的所有线段中,垂线段最短 5.如图,直线AB∥CD,AE⊥CE,∠1=125°,则∠C等于( ) A.35° B.45° C.50° D.55° 6.下列关于立方根的说法中,正确的是( ) A.的立方根是 B.立方根等于它本身的数有 C.的立方根为 D.一个数的立方根不是正数就是负数 7.一把直尺和一块直角三角尺(含30°、60°角)如图所示摆放,直尺的一边与三角尺的两直角边BC、AC分别交于点D、点E,直尺的另一边过A点且与三角尺的直角边BC交于点F,若∠CAF=42°,则∠CDE度数为( ) A.62° B.48° C.58° D.72° 8.如图,一个机器人从点出发,向正西方向走到达点;再向正北方向走到达点,再向正东方向走到达点,再向正南方向走到达点,再向正西方向走到达点,…按如此规律走下去,当机器人走到点时,点的坐标为( ) A. B. C. D. 九、填空题 9.的算术平方根是____. 十、填空题 10.已知点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称,那么a+b=_____. 十一、填空题 11.在△ABC中,AD为高线,AE为角平分线,当∠B=40º,∠ACD=60º,∠EAD的度数为_________. 十二、填空题 12.如图,,,,则的度数为___________. 十三、填空题 13.如图,将长方形纸片沿折叠,交于点E,得到图1,再将纸片沿折叠.得到图2,若,则图2中的为_______ 十四、填空题 14.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是_____. 十五、填空题 15.在平面直角坐标系中,若在轴上,则线段长度为________. 十六、填空题 16.如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),接着它按如图所示的横轴、纵轴的平行方向来回运动,即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→⋯,且每秒移动一个单位,那么粒子运动到点(3,0)时经过了__________秒;2014秒时这个粒子所在的位置的坐标为_____________. 十七、解答题 17.(1)计算 (2)计算: 十八、解答题 18.求下列各式中实数的x值. (1)25x2﹣36=0 (2)|x+2|=π 十九、解答题 19.如图,,,求度数.完成说理过程并注明理由. 解:∵, ∴________( ) 又∵, ∴, ∴__________( ) ∴( ) ∵, ∴______度. 二十、解答题 20.如图,在平面直角坐标系中,三角形ABC经过平移得到三角形A1B1C1,结合图形,完成下列问题: (1)三角形ABC先向左平移 个单位,再向 平移 个单位得到三角形A1B1C1. (2)三角形ABC内有一点P(,),则在三角形A1B1C1内部的对应点P1的坐标是 . (3)三角形ABC的面积是 . 二十一、解答题 21.已知的平方根是的立方根是是的整数部分,求的算术平方根. 二十二、解答题 22.如图用两个边长为cm的小正方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片长宽之比为,且面积为cm2?请说明理由. 二十三、解答题 23.直线AB∥CD,点P为平面内一点,连接AP,CP. (1)如图①,点P在直线AB,CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC的度数; (2)如图②,点P在直线AB,CD之间,∠BAP与∠DCP的角平分线相交于K,写出∠AKC与∠APC之间的数量关系,并说明理由; (3)如图③,点P在直线CD下方,当∠BAK=∠BAP,∠DCK=∠DCP时,写出∠AKC与∠APC之间的数量关系,并说明理由. 二十四、解答题 24.已知两条直线l1,l2,l1∥l2,点A,B在直线l1上,点A在点B的左边,点C,D在直线l2上,且满足. (1)如图①,求证:AD∥BC; (2)点M,N在线段CD上,点M在点N的左边且满足,且AN平分∠CAD; (Ⅰ)如图②,当时,求∠DAM的度数; (Ⅱ)如图③,当时,求∠ACD的度数. 二十五、解答题 25.解读基础: (1)图1形似燕尾,我们称之为“燕尾形”,请写出、、、之间的关系,并说明理由; (2)图2形似8字,我们称之为“八字形”,请写出、、、之间的关系,并说明理由: 应用乐园:直接运用上述两个结论解答下列各题 (3)①如图3,在中,、分别平分和,请直接写出和的关系 ; ②如图4, . (4)如图5,与的角平分线相交于点,与的角平分线相交于点,已知,,求和的度数. 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据对顶角定义可得B说法正确,根据邻补角定义可得A说法正确,根据同位角定义可得D说法正确,根据内错角定义可得C错误. 【详解】 解:A、∠2与∠4是邻补角,说法正确; B、∠2与∠3是对顶角,说法正确; C、∠1与∠4是同旁内角,故原说法错误; D、∠1与∠2是同位角,说法正确; 故选:C. 【点睛】 此题主要考查了对顶角、邻补角、同位角、内错角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形. 2.C 【分析】 平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可. 【详解】 解:A、对应点的连线相交,不能通过平移得到,不符合题意; B、对应点的连线相交,不能通过平移得到,不符合题 解析:C 【分析】 平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可. 【详解】 解:A、对应点的连线相交,不能通过平移得到,不符合题意; B、对应点的连线相交,不能通过平移得到,不符合题意; C、可通过平移得到,符合题意; D、对应点的连线相交,不能通过平移得到,不符合题意; 故选:C. 【点睛】 本题考查了平移变换,解题的关键是熟练掌握平移变换的性质,属于中考常考题型. 3.B 【分析】 根据直角坐标系的性质分析,即可得到答案. 【详解】 点位于第二象限 故选:B. 【点睛】 本题考查了直角坐标系的知识;解题的关键是熟练掌握象限、坐标的性质,从而完成求解. 4.A 【分析】 分别利用平行线以及点到直线的距离以及垂线以及垂线段最短的定义分别分析得出即可. 【详解】 解:、在同一平面内,经过一点(点不在已知直线上)能画一条且只能画一条直线与已知直线平行,故选项错误,符合题意; 、从直线外一点到这条直线的垂线段的长叫做点到直线的距离,正确,不符合题意; 、一条直线的垂线可以画无数条,正确,不符合题意; 、连接直线外一点与直线上各点的所有线段中,垂线段最短,正确,不符合题意; 故选:A. 【点评】 此题主要考查了平行线、垂线以及垂线段和点到直线的距离等定义,正确把握相关定义是解题关键. 5.A 【分析】 过点E作EF∥AB,则EF∥CD,利用“两直线平行,内错角相等”可得出∠BAE=∠AEF及∠C=∠CEF,结合∠AEF+∠CEF=90°可得出∠BAE+∠C=90°,由邻补角互补可求出∠BAE的度数,进而可求出∠C的度数. 【详解】 解:过点E作EF∥AB,则EF∥CD,如图所示. ∵EF∥AB, ∴∠BAE=∠AEF. ∵EF∥CD, ∴∠C=∠CEF. ∵AE⊥CE, ∴∠AEC=90°,即∠AEF+∠CEF=90°, ∴∠BAE+∠C=90°. ∵∠1=125°,∠1+∠BAE=180°, ∴∠BAE=180°﹣125°=55°, ∴∠C=90°﹣55°=35°. 故选:A. 【点睛】 本题考查了平行线的性质、垂线以及邻补角,牢记“两直线平行,内错角相等”是解题的关键. 6.B 【分析】 各项利用立方根定义判断即可. 【详解】 解:A、-9的立方根是,故该选项错误; B、立方根等于它本身的数有-1,0,1,故该选项正确; C、,-8的立方根为-2,故该选项错误; D、0的立方根是0,故该选项错误. 故选:B. 【点睛】 此题考查了立方根,熟练掌握立方根的定义是解本题的关键. 7.B 【分析】 先根据平行线的性质求出∠CED,再根据三角形的内角和等于180°即可求出∠CDE. 【详解】 解:∵DE∥AF,∠CAF=42°, ∴∠CED=∠CAF=42°, ∵∠DCE=90°,∠CDE+∠CED+∠DCE=180°, ∴∠CDE=180°-∠CED-∠DCE=180°-42°-90°=48°, 故选:B. 【点睛】 本题主要考查了平行线的性质以及三角形内角和等于180°,熟练掌握平行线的性质:两直线平行,同位角相等是解决问题的关键. 8.A 【分析】 先求出A1,A2,A3,…A8,发现规律,根据规律求出A20的坐标即可. 【详解】 解:∵一个机器人从点出发,向正西方向走到达点,点A1在x轴的负半轴上, ∴A1(-2,0) 从点A2 解析:A 【分析】 先求出A1,A2,A3,…A8,发现规律,根据规律求出A20的坐标即可. 【详解】 解:∵一个机器人从点出发,向正西方向走到达点,点A1在x轴的负半轴上, ∴A1(-2,0) 从点A2开始, 由点再向正北方向走到达点,A2(-2,4), 由点再向正东方向走到达点,A3(6-2,4)即(4,4), 由点再向正南方向走到达点,A4(4,4-8)即(4,-4), 由点A4再向正西方向走到达点,A5(4-10,-4)即(-6,-4), 由点A5再向正北方向走到达点A6,A6(-6,12-4)即(-6,8), 由点A6再向再向正东方向走到达点A7,A7(14-6,8)即(8,8), 由点A7再向正南方向走到达点,A8(8,8-16)即(8,-8), 观察图象可知,下标为偶数时在二四象限,下标为奇数时(除1外)在一三象限,下标被4整除在第四象限.且横坐标与下标相同,因为, 所以在第四象限,坐标为. 故选择A. 【点睛】 本题考查平面直角坐标系点的坐标规律问题,掌握求点的坐标方法与过程,利用下标与坐标的关系找出规律是解题关键. 九、填空题 9.9; 【分析】 根据算术平方根的定义计算可得. 【详解】 ∵(−9)2=81, ∴(−9)2的算术平方根是9, 故答案为:9 【点睛】 本题主要考查算术平方根,解题的关键是熟练掌握算术平方根的定义. 解析:9; 【分析】 根据算术平方根的定义计算可得. 【详解】 ∵(−9)2=81, ∴(−9)2的算术平方根是9, 故答案为:9 【点睛】 本题主要考查算术平方根,解题的关键是熟练掌握算术平方根的定义. 十、填空题 10.-3. 【分析】 关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a,b的值. 【详解】 解:∵点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称, ∴, 解得, ∴a+b= 解析:-3. 【分析】 关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a,b的值. 【详解】 解:∵点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称, ∴, 解得, ∴a+b=﹣3, 故答案为:﹣3. 【点睛】 本题考查的是关于轴对称的两个点的坐标关系,掌握以上知识是解题的关键. 十一、填空题 11.10°或40°; 【分析】 首先根据三角形的内角和定理求得∠BAC,再根据角平分线的定义求得∠BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED,最后根据直角三角形的两个锐角互余即 解析:10°或40°; 【分析】 首先根据三角形的内角和定理求得∠BAC,再根据角平分线的定义求得∠BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED,最后根据直角三角形的两个锐角互余即可求解. 【详解】 解:当高AD在△ABC的内部时. ∵∠B=40°,∠C=60°, ∴∠BAC=180°-40°-60°=80°, ∵AE平分∠BAC, ∴∠BAE=∠BAC=40°, ∵AD⊥BC, ∴∠BDA=90°, ∴∠BAD=90°-∠B=50°, ∴∠EAD=∠BAD-∠BAE=50°-40°=10°. 当高AD在△ABC的外部时. 同法可得∠EAD=10°+30°=40° 故答案为10°或40°. 【点睛】 此题考查三角形内角和定理,角平分线的定义,三角形的外角性质,解题关键在于求出∠BAE的度数 十二、填空题 12.30 【分析】 过点C作CF∥AB,根据平行线的传递性得到CF∥DE,根据平行线的性质得到∠BCF=∠ABC,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=70°,由等式性质得到∠ 解析:30 【分析】 过点C作CF∥AB,根据平行线的传递性得到CF∥DE,根据平行线的性质得到∠BCF=∠ABC,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=70°,由等式性质得到∠DCF=30°,于是得到结论. 【详解】 解:过点C作CF∥AB, ∵AB∥DE, ∴CF∥DE, ∴∠BCF=∠ABC=70°,∠DCF=180°-∠CDE=40°, ∴∠BCD=∠BCF-∠DCF=70°-40°=30°. 故答案为:30 【点睛】 本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行. 十三、填空题 13.126° 【分析】 在图1中,求出∠BCE,根据折叠的性质和外角的性质得到∠EDG,在图2中结合折叠的性质,利用∠CDG=∠EDG-∠CDE可得结果. 【详解】 解:在图1中,∠AEC=36°, ∵ 解析:126° 【分析】 在图1中,求出∠BCE,根据折叠的性质和外角的性质得到∠EDG,在图2中结合折叠的性质,利用∠CDG=∠EDG-∠CDE可得结果. 【详解】 解:在图1中,∠AEC=36°, ∵AD∥BC, ∴∠BCE=180°-∠AEC=144°, 由折叠可知:∠ECD=(180°-144°)÷2=18°, ∴∠CDE=∠AEC-∠ECD=18°, ∵∠DEF=∠AEC=36°, ∴∠EDG=180°-36°=144°, 在图2中,∠CDG=∠EDG-∠CDE=126°, 故答案为:126°. 【点睛】 本题考查了平行线的性质,折叠问题以及三角形的外角性质,利用三角形的外角性质,找出∠EDG的度数是解题的关键. 十四、填空题 14.﹣2或﹣1或0或1或2. 【分析】 有三种情况: ①当时,[x]=-1,(x)=0,[x)=-1或0, ∴[x]+(x)+[x)=-2或-1; ②当时,[x]=0,(x)=0,[x)=0, ∴[x] 解析:﹣2或﹣1或0或1或2. 【分析】 有三种情况: ①当时,[x]=-1,(x)=0,[x)=-1或0, ∴[x]+(x)+[x)=-2或-1; ②当时,[x]=0,(x)=0,[x)=0, ∴[x]+(x)+[x)=0; ③当时,[x]=0,(x)=1,[x)=0或1, ∴[x]+(x)+[x)=1或2; 综上所述,化简[x]+(x)+[x)的结果是-2或﹣1或0或1或2. 故答案为-2或﹣1或0或1或2. 点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键. 【详解】 请在此输入详解! 十五、填空题 15.5 【分析】 先根据在轴上,计算出m的值,根据纵坐标的绝对值即是线段长度可得到答案. 【详解】 ∵在轴上, ∴横坐标为0,即, 解得:, 故, ∴线段长度为, 故答案为:5. 【点睛】 本题只要考查 解析:5 【分析】 先根据在轴上,计算出m的值,根据纵坐标的绝对值即是线段长度可得到答案. 【详解】 ∵在轴上, ∴横坐标为0,即, 解得:, 故, ∴线段长度为, 故答案为:5. 【点睛】 本题只要考查了再y轴的点的特征(横坐标为零),在计算线段的长度时,注意线段长度不为负数. 十六、填空题 16.(10,44) 【分析】 该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题.设粒子运动到A1,A2,…An时所用的间分别为a1,a2,…an,则a1=2,a2=6,a3=12,a4 解析:(10,44) 【分析】 该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题.设粒子运动到A1,A2,…An时所用的间分别为a1,a2,…an,则a1=2,a2=6,a3=12,a4=20,…, 【详解】 解:由题意,粒子运动到点(3,0)时经过了15秒, 设粒子运动到A1,A2,…,An时所用的间分别为a1,a2,…,an, 则a1=2,a2=6,a3=12,a4=20,…, a2-a1=2×2, a3-a2=2×3, a4-a3=2×4, …, an-an-1=2n, 各式相加得: an-a1=2(2+3+4+…+n)=n2+n-2, ∴an=n(n+1). ∵44×45=1980,故运动了1980秒时它到点A44(44,44); 又由运动规律知:A1,A2,…,An中,奇数点处向下运动,偶数点处向左运动. 故达到A44(44,44)时向左运动34秒到达点(10,44), 即运动了2014秒.所求点应为(10,44). 故答案为:(10,44). 故答案为:15,(10,44). 【点睛】 本题考查了平面直角坐标系内点的运动规律,分析粒子在第一象限的运动规律得到递推关系式an-an-1=2n是本题的突破口,本题对运动规律的探索可知知:A1,A2,…An中,奇数点处向下运动,偶数点处向左运动,找到这个规律是解题的关键. 十七、解答题 17.(1);(2) 【分析】 (1)先根据算术平方根、立方根的定义化简各项,然后进行加减计算即可; (2)先根据算术平方根、立方根、平方的定义,绝对值的性质化简各项,然后进行加减计算即可. 【详解】 解 解析:(1);(2) 【分析】 (1)先根据算术平方根、立方根的定义化简各项,然后进行加减计算即可; (2)先根据算术平方根、立方根、平方的定义,绝对值的性质化简各项,然后进行加减计算即可. 【详解】 解:(1) ; (2) . 【点睛】 本题主要考查了实数的运算,解题的关键是熟练掌握算术平方根、立方根、平方的定义,绝对值的性质及实数运算法则. 十八、解答题 18.(1)x=±;(2)x=﹣2﹣π或x=﹣2+π 【分析】 (1)先移项,再将两边都除以25,再开平方即可求解; (2)根据绝对值的性质即可求解. 【详解】 解:(1)25x2﹣36=0, 25x2= 解析:(1)x=±;(2)x=﹣2﹣π或x=﹣2+π 【分析】 (1)先移项,再将两边都除以25,再开平方即可求解; (2)根据绝对值的性质即可求解. 【详解】 解:(1)25x2﹣36=0, 25x2=36, x2=, x=±; (2)|x+2|=π, x+2=±π, x=﹣2﹣π或x=﹣2+π. 【点睛】 本题主要考查了绝对值及平方根,注意一个正数的平方根有两个,它们互为相反数. 十九、解答题 19.∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70 【分析】 根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等 解析:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70 【分析】 根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等,两直线平行,得出AB∥DG,然后根据两直线平行,同旁内角互补解答即可. 【详解】 解:∵EF∥AD, ∴∠2=∠3(两直线平行,同位角相等). 又∵∠1=∠2, ∴∠1=∠3, ∴AB∥DG(内错角相等,两直线平行). ∴∠AGD+∠BAC=180°(两直线平行,同旁内角互补). ∵∠AGD=110°, ∴∠BAC=70度. 故答案为:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70. 【点睛】 本题考查了平行线的判定与性质,熟记性质与判定方法,并判断出AB∥DG是解题的关键. 二十、解答题 20.(1)5,下,4;(2)(,);(3)7. 【分析】 (1)根据题图直接判断即可;(2)由平移的性质:上加下减,左减右加解答即可;(3)利用分割法求出三角形的面积即可. 【详解】 解:(1)根据题图 解析:(1)5,下,4;(2)(,);(3)7. 【分析】 (1)根据题图直接判断即可;(2)由平移的性质:上加下减,左减右加解答即可;(3)利用分割法求出三角形的面积即可. 【详解】 解:(1)根据题图可知,三角形ABC先向左平移5个单位,再向下平移4个单位得到三角形A1B1C1; 故答案是:5,下,4; (2)由平移的性质:上加下减,左减右加可知,三角形ABC内有一点P(,),则在三角形A1B1C1内部的对应点P1的坐标是(,), 故答案是:(,); (3), 故答案是:7. 【点睛】 本题考查作图:平移变换,三角形的面积等知识,熟练掌握基本知识,学会用分割法求三角形的面积是解题的关键. 二十一、解答题 21.【分析】 首先根据平方根与立方根的概念可得2a−1与a+3b−1的值,进而可得a、b的值;接着估计的大小,可得c的值;进而可得a+2b+c,根据算术平方根的求法可得答案. 【详解】 解:根据题意, 解析: 【分析】 首先根据平方根与立方根的概念可得2a−1与a+3b−1的值,进而可得a、b的值;接着估计的大小,可得c的值;进而可得a+2b+c,根据算术平方根的求法可得答案. 【详解】 解:根据题意,可得2a−1=9, a+3b−1=-8; 解得:a=5,b=-4; 又∵6<<7, 可得c=6; ∴a+2b+c=3; ∴a+2b+c的算术平方根为. 【点睛】 此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,“夹逼法”是估算的一般方法,也是常用方法. 二十二、解答题 22.不能截得长宽之比为,且面积为cm2的长方形纸片,见解析 【分析】 根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可. 【详解】 解:不能, 因为大正方形纸 解析:不能截得长宽之比为,且面积为cm2的长方形纸片,见解析 【分析】 根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可. 【详解】 解:不能, 因为大正方形纸片的面积为()2+()2=36(cm2), 所以大正方形的边长为6cm, 设截出的长方形的长为3b cm,宽为2b cm, 则6b2=30, 所以b=(取正值), 所以3b=3=>, 所以不能截得长宽之比为3:2,且面积为30cm2的长方形纸片. 【点睛】 本题考查了算术平方根,理解算术平方根的意义是正确解答的关键. 二十三、解答题 23.(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析 【分析】 (1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠ 解析:(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析 【分析】 (1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠APC=∠APE+∠CPE=∠BAP+∠DCP进行计算即可; (2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线的定义,得出∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,进而得到∠AKC=∠APC; (3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据已知得出∠BAK﹣∠DCK=∠BAP﹣∠DCP=∠APC,进而得到∠BAK﹣∠DCK=∠APC. 【详解】 (1)如图1,过P作PE∥AB, ∵AB∥CD, ∴PE∥AB∥CD, ∴∠APE=∠BAP,∠CPE=∠DCP, ∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°; (2)∠AKC=∠APC. 理由:如图2,过K作KE∥AB, ∵AB∥CD, ∴KE∥AB∥CD, ∴∠AKE=∠BAK,∠CKE=∠DCK, ∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK, 过P作PF∥AB, 同理可得,∠APC=∠BAP+∠DCP, ∵∠BAP与∠DCP的角平分线相交于点K, ∴∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC, ∴∠AKC=∠APC; (3)∠AKC=∠APC 理由:如图3,过K作KE∥AB, ∵AB∥CD, ∴KE∥AB∥CD, ∴∠BAK=∠AKE,∠DCK=∠CKE, ∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK, 过P作PF∥AB, 同理可得,∠APC=∠BAP﹣∠DCP, ∵∠BAK=∠BAP,∠DCK=∠DCP, ∴∠BAK﹣∠DCK=∠BAP﹣∠DCP=(∠BAP﹣∠DCP)=∠APC, ∴∠AKC=∠APC. 【点睛】 本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算. 二十四、解答题 24.(1)证明见解析;(2)(Ⅰ);(Ⅱ). 【分析】 (1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证; (2)(Ⅰ)先根据平行线的性质可得,从而可得,再根据角的和差可得 解析:(1)证明见解析;(2)(Ⅰ);(Ⅱ). 【分析】 (1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证; (2)(Ⅰ)先根据平行线的性质可得,从而可得,再根据角的和差可得,然后根据即可得; (Ⅱ)设,从而可得,先根据角平分线的定义可得,再根据角的和差可得,然后根据建立方程可求出x的值,从而可得的度数,最后根据平行线的性质即可得. 【详解】 (1), , 又, , ; (2)(Ⅰ), , , , 由(1)已得:, , ; (Ⅱ)设,则, 平分, , , , , 由(1)已得:, ,即, 解得, , 又, . 【点睛】 本题考查了平行线的判定与性质、角的和差、角平分线的定义、一元一次方程的几何应用等知识点,熟练掌握平行线的判定与性质是解题关键. 二十五、解答题 25.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); . 【分析】 (1)根据三角形外角等于不相邻的两个内角之和即可得出结论; (2)根据三角形内角和定理及对顶角相等即可得出结 解析:(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); . 【分析】 (1)根据三角形外角等于不相邻的两个内角之和即可得出结论; (2)根据三角形内角和定理及对顶角相等即可得出结论; (3)①根据角平分线的定义及三角形内角和定理即可得出结论; ②连结BE,由(2)的结论及四边形内角和为360°即可得出结论; (4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论. 【详解】 (1).理由如下: 如图1,,,,; (2).理由如下: 在中,,在中,,,; (3)①,,、分别平分和,,. 故答案为:. ②连结. ∵,. 故答案为:; (4)由(1)知,,,,,,,,,,,; . 【点睛】 本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 中学 七年 级数 下册 期末 质量 检测 试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文