2024年人教版七7年级下册数学期末解答题复习.doc
《2024年人教版七7年级下册数学期末解答题复习.doc》由会员分享,可在线阅读,更多相关《2024年人教版七7年级下册数学期末解答题复习.doc(34页珍藏版)》请在咨信网上搜索。
2024年人教版七7年级下册数学期末解答题复习 一、解答题 1.(1)如图1,分别把两个边长为的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为______; (2)若一个圆的面积与一个正方形的面积都是,设圆的周长为.正方形的周长为,则______(填“”,或“”,或“”) (3)如图2,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由? 2.如图是一块正方形纸片. (1)如图1,若正方形纸片的面积为1dm2,则此正方形的对角线AC的长为 dm. (2)若一圆的面积与这个正方形的面积都是2πcm2,设圆的周长为C圆,正方形的周长为C正,则C圆 C正(填“=”或“<”或“>”号) (3)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12cm2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由? 3.如图,这是由8个同样大小的立方体组成的魔方,体积为64. (1)求出这个魔方的棱长; (2)图中阴影部分是一个正方形ABCD,求出阴影部分的边长. 4.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m2的正方形场地改建成300m2的长方形场地,且其长、宽的比为5:3. (1)求原来正方形场地的周长; (2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由. 5.小丽想用一块面积为的正方形纸片,如图所示,沿着边的方向裁出一块面积为的长方形纸片,使它的长是宽的2倍.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗?为什么? 二、解答题 6.已知点C在射线OA上. (1)如图①,CDOE,若∠AOB=90°,∠OCD=120°,求∠BOE的度数; (2)在①中,将射线OE沿射线OB平移得O′E'(如图②),若∠AOB=α,探究∠OCD与∠BO′E′的关系(用含α的代数式表示) (3)在②中,过点O′作OB的垂线,与∠OCD的平分线交于点P(如图③),若∠CPO′=90°,探究∠AOB与∠BO′E′的关系. 7.如图,,直线与、分别交于点、,点在直线上,过点作,垂足为点. (1)如图1,求证:; (2)若点在线段上(不与、、重合),连接,和的平分线交于点请在图2中补全图形,猜想并证明与的数量关系; 8.问题情境: 如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质,可得∠APC=∠APE+∠CPE=50°+60°=110°. 问题解决: (1)如图2,AB∥CD,直线l分别与AB、CD交于点M、N,点P在直线I上运动,当点P在线段MN上运动时(不与点M、N重合),∠PAB=α,∠PCD=β,判断∠APC、α、β之间的数量关系并说明理由; (2)在(1)的条件下,如果点P在线段MN或NM的延长线上运动时.请直接写出∠APC、α、B之间的数量关系; (3)如图3,AB∥CD,点P是AB、CD之间的一点(点P在点A、C右侧),连接PA、PC,∠BAP和∠DCP的平分线交于点Q.若∠APC=116°,请结合(2)中的规律,求∠AQC的度数. 9.已知,点在与之间. (1)图1中,试说明:; (2)图2中,的平分线与的平分线相交于点,请利用(1)的结论说明:. (3)图3中,的平分线与的平分线相交于点,请直接写出与之间的数量关系. 10.已知,点为平面内一点,于. (1)如图1,求证:; (2)如图2,过点作的延长线于点,求证:; (3)如图3,在(2)问的条件下,点、在上,连接、、,且平分,平分,若,,求的度数. 三、解答题 11.(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有,请判断光线a与光线b是否平行,并说明理由. (2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线与水平线的夹角为,问如何放置平面镜,可使反射光线b正好垂直照射到井底?(即求与水平线的夹角) (3)如图3,直线上有两点A、C,分别引两条射线、.,,射线、分别绕A点,C点以1度/秒和3度/秒的速度同时顺时针转动,设时间为t,在射线转动一周的时间内,是否存在某时刻,使得与平行?若存在,求出所有满足条件的时间t. 12.如图,AB⊥AK,点A在直线MN上,AB、AK分别与直线EF交于点B、C,∠MAB+∠KCF=90°. (1)求证:EF∥MN; (2)如图2,∠NAB与∠ECK的角平分线交于点G,求∠G的度数; (3)如图3,在∠MAB内作射线AQ,使∠MAQ=2∠QAB,以点C为端点作射线CP,交直线AQ于点T,当∠CTA=60°时,直接写出∠FCP与∠ACP的关系式. 13.如图1,,E是、之间的一点. (1)判定,与之间的数量关系,并证明你的结论; (2)如图2,若、的两条平分线交于点F.直接写出与之间的数量关系; (3)将图2中的射线沿翻折交于点G得图3,若的余角等于的补角,求的大小. 14.已知,如图①,∠BAD=50°,点C为射线AD上一点(不与A重合),连接BC. (1)[问题提出]如图②,AB∥CE,∠BCD=73 °,则:∠B= . (2)[类比探究]在图①中,探究∠BAD、∠B和∠BCD之间有怎样的数量关系?并用平行线的性质说明理由. (3)[拓展延伸]如图③,在射线BC上取一点O,过O点作直线MN使MN∥AD,BE平分∠ABC交AD于E点,OF平分∠BON交AD于F点,交AD于G点,当C点沿着射线AD方向运动时,∠FOG的度数是否会变化?若变化,请说明理由;若不变,请求出这个不变的值. 15.如图所示,已知,点P是射线AM上一动点(与点A不重合),BC、BD分别平分和,分别交射线AM于点C、D,且 (1)求的度数. (2)当点P运动时,与之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律. (3)当点P运动到使时,求的度数. 四、解答题 16.小明在学习过程中,对教材中的一个有趣问题做如下探究: (习题回顾)已知:如图1,在中,,是角平分线,是高,、相交于点.求证:; (变式思考)如图2,在中,,是边上的高,若的外角的平分线交的延长线于点,其反向延长线与边的延长线交于点,则与还相等吗?说明理由; (探究延伸)如图3,在中,上存在一点,使得,的平分线交于点.的外角的平分线所在直线与的延长线交于点.直接写出与的数量关系. 17.如图①,平分,⊥,∠B=450,∠C=730. (1) 求的度数; (2) 如图②,若把“⊥”变成“点F在DA的延长线上,”,其它条件不变,求 的度数; (3) 如图③,若把“⊥”变成“平分”,其它条件不变,的大小是否变化,并请说明理由. 18.己知:如图①,直线直线,垂足为,点在射线上,点在射线上(、不与点重合),点在射线上且,过点作直线.点在点的左边且 (1)直接写出的面积 ; (2)如图②,若,作的平分线交于,交于,试说明; (3)如图③,若,点在射线上运动,的平分线交的延长线于点,在点运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围. 19.如果三角形的两个内角与满足,那么我们称这样的三角形是“准互余三角形”. (1)如图1,在中,,是的角平分线,求证:是“准互余三角形”; (2)关于“准互余三角形”,有下列说法: ①在中,若,,,则是“准互余三角形”; ②若是“准互余三角形”,,,则; ③“准互余三角形”一定是钝角三角形. 其中正确的结论是___________(填写所有正确说法的序号); (3)如图2,,为直线上两点,点在直线外,且.若是直线上一点,且是“准互余三角形”,请直接写出的度数. 20.如图①所示,在三角形纸片中,,,将纸片的一角折叠,使点落在内的点处. (1)若,________. (2)如图①,若各个角度不确定,试猜想,,之间的数量关系,直接写出结论. ②当点落在四边形外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,,,之间又存在什么关系?请说明. (3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的和是________. 【参考答案】 一、解答题 1.(1);(2)<;(3)不能,理由见解析 【分析】 (1)根据所拼成的大正方形的面积为2即可求得大正方形的边长; (2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的 解析:(1);(2)<;(3)不能,理由见解析 【分析】 (1)根据所拼成的大正方形的面积为2即可求得大正方形的边长; (2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可; (3)利用方程思想求出长方形的长边,与正方形边长比较大小即可; 【详解】 解:(1)∵小正方形的边长为1cm, ∴小正方形的面积为1cm2, ∴两个小正方形的面积之和为2cm2, 即所拼成的大正方形的面积为2 cm2, 设大正方形的边长为xcm, ∴ , ∴ ∴大正方形的边长为cm; (2)设圆的半径为r, ∴由题意得, ∴, ∴, 设正方形的边长为a ∵, ∴, ∴, ∴ 故答案为:<; (3)解:不能裁剪出,理由如下: ∵正方形的面积为900cm2, ∴正方形的边长为30cm ∵长方形纸片的长和宽之比为, ∴设长方形纸片的长为,宽为, 则, 整理得:, ∴, ∴, ∴, ∴长方形纸片的长大于正方形的边长, ∴不能裁出这样的长方形纸片. 【点睛】 本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查. 2.(1);(2)<;(3)不能;理由见解析. 【分析】 (1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长; (2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法; (3)采 解析:(1);(2)<;(3)不能;理由见解析. 【分析】 (1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长; (2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法; (3)采用方程思想求出长方形的长边,与正方形边长比较大小即可. 【详解】 解:(1)由已知AB2=1,则AB=1, 由勾股定理,AC=; 故答案为:. (2)由圆面积公式,可得圆半径为,周长为,正方形周长为4. ;即C圆<C正; 故答案为:< (3)不能; 由已知设长方形长和宽为3xcm和2xcm ∴长方形面积为:2x•3x=12 解得x= ∴长方形长边为3>4 ∴他不能裁出. 【点睛】 本题主要考查了算术平方根在正方形、圆、长方形面积中的应用,灵活的进行算术平方根的计算与无理数大小比较是解题的关键. 3.(1)棱长为4;(2)边长为:(或) 【分析】 (1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案. 【详解】 解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4. 解析:(1)棱长为4;(2)边长为:(或) 【分析】 (1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案. 【详解】 解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4. (2)因为正方体的棱长为4,所以AB=. 【点睛】 本题考查的是立方根与算术平方根的理解与计算,由实际的情境去理解问题本身就是求一个数的立方根与算术平方根是关键. 4.(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用. 【分析】 (1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可; (2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为 解析:(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用. 【分析】 (1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可; (2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为5am,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用. 【详解】 解:(1)=20(m),4×20=80(m), 答:原来正方形场地的周长为80m; (2)设这个长方形场地宽为3am,则长为5am. 由题意有:3a×5a=300, 解得:a=±, ∵3a表示长度, ∴a>0, ∴a=, ∴这个长方形场地的周长为 2(3a+5a)=16a=16(m), ∵80=16×5=16×>16, ∴这些铁栅栏够用. 【点睛】 本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长. 5.不同意,理由见解析 【分析】 先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断. 【详解】 解:不同意, 因为正方形的面积为, 解析:不同意,理由见解析 【分析】 先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断. 【详解】 解:不同意, 因为正方形的面积为,故边长为 设长方形宽为,则长为 长方形面积 ∴, 解得(负值舍去) 长为 即长方形的长大于正方形的边长, 所以不能裁出符合要求的长方形纸片 【点睛】 本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键. 二、解答题 6.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′ 【分析】 (1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数; (2) 解析:(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′ 【分析】 (1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数; (2)如图②,过O点作OF∥CD,根据平行线的判定和性质可得∠OCD、∠BO′E′的数量关系; (3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,结合角平分线的定义可推出∠OCD=2∠PCO=360°-2∠AOB,根据(2)∠OCD+∠BO′E′=360°-∠AOB,进而推出∠AOB=∠BO′E′. 【详解】 解:(1)∵CD∥OE, ∴∠AOE=∠OCD=120°, ∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°; (2)∠OCD+∠BO′E′=360°-α. 证明:如图②,过O点作OF∥CD, ∵CD∥O′E′, ∴OF∥O′E′, ∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′, ∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α, ∴∠OCD+∠BO′E′=360°-α; (3)∠AOB=∠BO′E′. 证明:∵∠CPO′=90°, ∴PO′⊥CP, ∵PO′⊥OB, ∴CP∥OB, ∴∠PCO+∠AOB=180°, ∴2∠PCO=360°-2∠AOB, ∵CP是∠OCD的平分线, ∴∠OCD=2∠PCO=360°-2∠AOB, ∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB, ∴360°-2∠AOB+∠BO′E′=360°-∠AOB, ∴∠AOB=∠BO′E′. 【点睛】 此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键. 7.(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,. 【分析】 (1)过点作,根据平行线的性质即可求解; (2)分两种情况:当点在上,当点在上,再过点作即可求解. 【详解】 (1)证明: 解析:(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,. 【分析】 (1)过点作,根据平行线的性质即可求解; (2)分两种情况:当点在上,当点在上,再过点作即可求解. 【详解】 (1)证明:如图,过点作, ∴, ∵, ∴. ∴. ∵, ∴, ∴. (2)补全图形如图2、图3, 猜想:或. 证明:过点作. ∴. ∵, ∴ ∴, ∴. ∵平分, ∴. 如图3,当点在上时, ∵平分, ∴, ∵, ∴, 即. 如图2,当点在上时, ∵平分, ∴. ∴. 即. 【点睛】 本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系. 8.(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58° 【分析】 (1)过点P作PE∥AB,根据平行线的判定与性质即可求解; (2)分点P在线段MN或NM的延长线 解析:(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58° 【分析】 (1)过点P作PE∥AB,根据平行线的判定与性质即可求解; (2)分点P在线段MN或NM的延长线上运动两种情况,根据平行线的判定与性质及角的和差即可求解; (3)过点P,Q分别作PE∥AB,QF∥AB,根据平行线的判定与性质及角的和差即可求解. 【详解】 解:(1)如图2,过点P作PE∥AB, ∵AB∥CD, ∴PE∥AB∥CD, ∴∠APE=α,∠CPE=β, ∴∠APC=∠APE+∠CPE=α+β. (2)如图,在(1)的条件下,如果点P在线段MN的延长线上运动时, ∵AB∥CD,∠PAB=α, ∴∠1=∠PAB=α, ∵∠1=∠APC+∠PCD,∠PCD=β, ∴α=∠APC+β, ∴∠APC=α-β; 如图,在(1)的条件下,如果点P在线段NM的延长线上运动时, ∵AB∥CD,∠PCD=β, ∴∠2=∠PCD=β, ∵∠2=∠PAB+∠APC,∠PAB=α, ∴β=α+∠APC, ∴∠APC=β-α; (3)如图3,过点P,Q分别作PE∥AB,QF∥AB, ∵AB∥CD, ∴AB∥QF∥PE∥CD, ∴∠BAP=∠APE,∠PCD=∠EPC, ∵∠APC=116°, ∴∠BAP+∠PCD=116°, ∵AQ平分∠BAP,CQ平分∠PCD, ∴∠BAQ=∠BAP,∠DCQ=∠PCD, ∴∠BAQ+∠DCQ=(∠BAP+∠PCD)=58°, ∵AB∥QF∥CD, ∴∠BAQ=∠AQF,∠DCQ=∠CQF, ∴∠AQF+∠CQF=∠BAQ+∠DCQ=58°, ∴∠AQC=58°. 【点睛】 此题考查了平行线的判定与性质,添加辅助线将两条平行线相关的角联系到一起是解题的关键. 9.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD. 【分析】 (1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG, 解析:(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD. 【分析】 (1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE; (2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD; (3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系. 【详解】 解:(1)如图1中,过点E作EG∥AB, 则∠BEG=∠ABE, 因为AB∥CD,EG∥AB, 所以CD∥EG, 所以∠DEG=∠CDE, 所以∠BEG+∠DEG=∠ABE+∠CDE, 即∠BED=∠ABE+∠CDE; (2)图2中,因为BF平分∠ABE, 所以∠ABE=2∠ABF, 因为DF平分∠CDE, 所以∠CDE=2∠CDF, 所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF), 由(1)得:因为AB∥CD, 所以∠BED=∠ABE+∠CDE, ∠BFD=∠ABF+∠CDF, 所以∠BED=2∠BFD. (3)∠BED=360°-2∠BFD. 图3中,过点E作EG∥AB, 则∠BEG+∠ABE=180°, 因为AB∥CD,EG∥AB, 所以CD∥EG, 所以∠DEG+∠CDE=180°, 所以∠BEG+∠DEG=360°-(∠ABE+∠CDE), 即∠BED=360°-(∠ABE+∠CDE), 因为BF平分∠ABE, 所以∠ABE=2∠ABF, 因为DF平分∠CDE, 所以∠CDE=2∠CDF, ∠BED=360°-2(∠ABF+∠CDF), 由(1)得:因为AB∥CD, 所以∠BFD=∠ABF+∠CDF, 所以∠BED=360°-2∠BFD. 【点睛】 本题考查了平行线的性质,解决本题的关键是掌握平行线的性质. 10.(1)见解析;(2)见解析;(3). 【分析】 (1)先根据平行线的性质得到,然后结合即可证明; (2)过作,先说明,然后再说明得到,最后运用等量代换解答即可; (3)设∠DBE=a,则∠BFC=3 解析:(1)见解析;(2)见解析;(3). 【分析】 (1)先根据平行线的性质得到,然后结合即可证明; (2)过作,先说明,然后再说明得到,最后运用等量代换解答即可; (3)设∠DBE=a,则∠BFC=3a,根据角平分线的定义可得∠ABD=∠C=2a,∠FBC=∠DBC=a+45°,根据三角形内角和可得∠BFC+∠FBC+∠BCF=180°,可得∠AFC=∠BCF的度数表达式,再根据平行的性质可得∠AFC+∠NCF=180°,代入即可算出a的度数,进而完成解答. 【详解】 (1)证明:∵, ∴, ∵于, ∴, ∴, ∴; (2)证明:过作, ∵, ∴, 又∵, ∴, ∴, ∵, ∴, ∴, ∴; (3)设∠DBE=a,则∠BFC=3a, ∵BE平分∠ABD, ∴∠ABD=∠C=2a, 又∵AB⊥BC,BF平分∠DBC, ∴∠DBC=∠ABD+∠ABC=2a+90,即:∠FBC=∠DBC=a+45° 又∵∠BFC+∠FBC+∠BCF=180°,即:3a+a+45°+∠BCF=180° ∴∠BCF=135°-4a, ∴∠AFC=∠BCF=135°-4a, 又∵AM//CN, ∴∠AFC+∠ NCF=180°,即:∠AFC+∠BCN+∠BCF=180°, ∴135°-4a+135°-4a+2a=180,解得a=15°, ∴∠ABE=15°, ∴∠EBC=∠ABE+∠ABC=15°+90°=105°. 【点睛】 本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键. 三、解答题 11.(1)平行,理由见解析;(2)65°;(3)5秒或95秒 【分析】 (1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b; (2)根据入射光线与镜面的夹角与反 解析:(1)平行,理由见解析;(2)65°;(3)5秒或95秒 【分析】 (1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b; (2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得∠1=∠2,然后根据平角等于180°求出∠1的度数,再加上40°即可得解; (3)分①AB与CD在EF的两侧,分别表示出∠ACD与∠BAC,然后根据两直线平行,内错角相等列式计算即可得解;②CD旋转到与AB都在EF的右侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解;③CD旋转到与AB都在EF的左侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解. 【详解】 解:(1)平行.理由如下: 如图1,∵∠3=∠4, ∴∠5=∠6, ∵∠1=∠2, ∴∠1+∠5=∠2+∠6, ∴a∥b(内错角相等,两直线平行); (2)如图2: ∵入射光线与镜面的夹角与反射光线与镜面的夹角相等, ∴∠1=∠2, ∵入射光线a与水平线OC的夹角为40°,b垂直照射到井底, ∴∠1+∠2=180°-40°-90°=50°, ∴∠1=×50°=25°, ∴MN与水平线的夹角为:25°+40°=65°, 即MN与水平线的夹角为65°,可使反射光线b正好垂直照射到井底; (3)存在. 如图①,AB与CD在EF的两侧时, ∵∠BAF=105°,∠DCF=65°, ∴∠ACD=180°-65°-3t°=115°-3t°, ∠BAC=105°-t°, 要使AB∥CD, 则∠ACD=∠BAC, 即115-3t=105-t, 解得t=5; 如图②,CD旋转到与AB都在EF的右侧时, ∵∠BAF=105°,∠DCF=65°, ∴∠DCF=360°-3t°-65°=295°-3t°, ∠BAC=105°-t°, 要使AB∥CD, 则∠DCF=∠BAC, 即295-3t=105-t, 解得t=95; 如图③,CD旋转到与AB都在EF的左侧时, ∵∠BAF=105°,∠DCF=65°, ∴∠DCF=3t°-(180°-65°+180°)=3t°-295°, ∠BAC=t°-105°, 要使AB∥CD, 则∠DCF=∠BAC, 即3t-295=t-105, 解得t=95, 此时t>105, ∴此情况不存在. 综上所述,t为5秒或95秒时,CD与AB平行. 【点睛】 本题考查了平行线的判定与性质,光学原理,读懂题意并熟练掌握平行线的判定方法与性质是解题的关键,(3)要注意分情况讨论. 12.(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°. 【分析】 (1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠K 解析:(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°. 【分析】 (1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠KCF,从而判断两直线平行; (2)设∠KAN=∠KCF=α,过点G作GH∥EF,结合角平分线的定义和平行线的判定及性质求解; (3)分CP交射线AQ及射线AQ的反向延长线两种情况结合角的和差关系分类讨论求解. 【详解】 解:(1)∵AB⊥AK ∴∠BAC=90° ∴∠MAB+∠KAN=90° ∵∠MAB+∠KCF=90° ∴∠KAN=∠KCF ∴EF∥MN (2)设∠KAN=∠KCF=α 则∠BAN=∠BAC+∠KAN=90°+α ∠KCB=180°-∠KCF=180°-α ∵AG平分∠NAB,CG平分∠ECK ∴∠GAN=∠BAN=45°+α,∠KCG=∠KCB=90°-α ∴∠FCG=∠KCG+∠KCF=90°+α 过点G作GH∥EF ∴∠HGC=∠FCG=90°+α 又∵MN∥EF ∴MN∥GH ∴∠HGA=∠GAN=45°+α ∴∠CGA=∠HGC-∠HGA=(90°+α)-(45°+α)=45° (3)①当CP交射线AQ于点T ∵ ∴ 又∵ ∴ 由(1)可得:EF∥MN ∴ ∵ ∴ ∵, ∴ ∴ 即∠FCP+2∠ACP=180° ②当CP交射线AQ的反向延长线于点T,延长BA交CP于点G ,由EF∥MN得 ∴ 又∵,, ∴ ∵, ∴ ∴ ∴ 由①可得 ∴ ∴ 综上,∠FCP=2∠ACP或∠FCP+2∠ACP=180°. 【点睛】 本题考查平行线的判定和性质以及角的和差关系,准确理解题意,正确推理计算是解题关键. 13.(1),见解析;(2);(3)60° 【分析】 (1)作EF//AB,如图1,则EF//CD,利用平行线的性质得∠1=∠BAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED; (2)如图2, 解析:(1),见解析;(2);(3)60° 【分析】 (1)作EF//AB,如图1,则EF//CD,利用平行线的性质得∠1=∠BAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED; (2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF,根据角平分线的定义得到∠BAF=∠BAE,∠CDF=∠CDE,则∠AFD=(∠BAE+∠CDE),加上(1)的结论得到∠AFD=∠AED; (3)由(1)的结论得∠AGD=∠BAF+∠CDG,利用折叠性质得∠CDG=4∠CDF,再利用等量代换得到∠AGD=2∠AED-∠BAE,加上90°-∠AGD=180°-2∠AED,从而可计算出∠BAE的度数. 【详解】 解:(1) 理由如下: 作,如图1, , . ,, ; (2)如图2,由(1)的结论得, 、的两条平分线交于点F, ,, , , ; (3)由(1)的结论得, 而射线沿翻折交于点G, , , , , . 【点睛】 本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等. 14.(1);(2),见解析;(3)不变, 【分析】 (1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数; (2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用 解析:(1);(2),见解析;(3)不变, 【分析】 (1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数; (2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用(2)的结论和平行线的性质、角平分线的性质,可求出的度数,可得结论. 【详解】 (1)因为∥, 所以, 因为∠BCD=73 °, 所以, 故答案为: (2), 如图②,过点作∥, 则,. 因为, 所以, (3)不变, 设, 因为平分, 所以. 由(2)的结论可知,且, 则:. 因为∥, 所以, 因为平分, 所以. 因为∥, 所以, 所以. 【点睛】 本题考查了平行线的性质和角平分线的定义,解题关键是熟练运用平行线的性质证明角相等,通过等量代换等方法得出角之间的关系. 15.(1);(2)不变化,,理由见解析;(3) 【分析】 (1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案; (2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解 解析:(1);(2)不变化,,理由见解析;(3) 【分析】 (1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案; (2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解; (3)根据平行线的性质,得;结合,推导得;再结合(1)的结论计算,即可得到答案. 【详解】 (1)∵BC,BD分别评分和, ∴, ∴ 又∵, ∴ ∵, ∴ ∴; (2)∵, ∴, 又∵BD平分 ∴, ∴; ∴与之间的数量关系保持不变; (3)∵, ∴ 又∵, ∴, ∵ ∴ 由(1)可得, ∴. 【点睛】 本题考查了角平分线、平行线的知识;解题的关键是熟练掌握角平分线、平行线的性质,从而完成求解. 四、解答题 16.[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析. 【分析】 [习题回顾]根据同角的余角相等可证明∠B=∠ACD,再根据三角形的外角的性质即可 解析:[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析. 【分析】 [习题回顾]根据同角的余角相等可证明∠B=∠ACD,再根据三角形的外角的性质即可证明; [变式思考]根据角平分线的定义和对顶角相等可得∠CAE=∠DAF、再根据直角三角形的性质和等角的余角相等即可得出=; [探究延伸]根据角平分线的定义可得∠EAN=90°,根据直角三角形两锐角互余可得∠M+∠CEF=90°,再根据三角形外角的性质可得∠CEF=∠CFE,由此可证∠M+∠CFE=90°. 【详解】 [习题回顾]证明:∵∠ACB=90°,CD是高, ∴∠B+∠CAB=90°,∠ACD+∠CAB=90°, ∴∠B=∠ACD, ∵AE是角平分线, ∴∠CAF=∠DAF, ∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B, ∴∠CEF=∠CFE; [变式思考]相等,理由如下: 证明:∵AF为∠BAG的角平分线, ∴∠GAF=∠DAF, ∵∠CAE=∠GAF, ∴∠CAE=∠DAF, ∵CD为AB边上的高,∠ACB=90°, ∴∠ADC=90°, ∴∠ADF=∠ACE=90°, ∴∠DAF+∠F=90°,∠E+∠CAE=90°, ∴∠CEF=∠CFE; [探究延伸]∠M+∠CFE=90°, 证明:∵C、A、G三点共线 AE、AN为角平分线, ∴∠EAN=90°, 又∵∠GAN=∠CAM, ∴∠M+∠CEF=90°, ∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B, ∴∠CEF=∠CFE, ∴∠M+∠CFE=90°. 【点睛】 本题考查三角形的外角的性质,直角三角形两锐角互余,角平分线的有关证明,等角或同角的余角相等.在本题中用的比较多的是利用等角或同角的余角相等证明角相等和三角形一个外角等于与它不相邻的两个内角之和,理解并掌握是解决此题的关键. 17.(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析. 【分析】 (1)求出∠ADE的度数,利用∠DAE=90°-∠ADE即可求出∠DAE 解析:(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析. 【分析】 (1)求出∠ADE的- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2024 年人教版七 年级 下册 数学 期末 解答 复习
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文