2024年人教版七7年级下册数学期末综合复习卷(含解析).doc
《2024年人教版七7年级下册数学期末综合复习卷(含解析).doc》由会员分享,可在线阅读,更多相关《2024年人教版七7年级下册数学期末综合复习卷(含解析).doc(23页珍藏版)》请在咨信网上搜索。
2024年人教版七7年级下册数学期末综合复习卷(含解析) 一、选择题 1.如图所示,下列说法正确的是( ) A.和是内错角 B.和是同旁内角 C.和是同位角 D.和是内错角 2.春意盎然,在婺外校园里下列哪种运动不属于平移( ) A.树枝随着春风摇曳 B.值日学生拉动可移动黑板 C.行政楼电梯的升降 D.晚自修后学生两列队伍整齐排列笔直前行 3.若点在第四象限,则点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列命题中假命题的是( ) A.同旁内角互补,两直线平行 B.如果两条直线都与第三条直线平行,那么这两条直线也互相平行 C.在同一平面内,过一点有且只有一条直线与已知直线垂直 D.在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直 5.如图,点E在BA的延长线上,能证明BE∥CD是( ) A.∠EAD=∠B B.∠BAD=∠BCD C.∠EAD=∠ADC D.∠BCD+∠D=180° 6.下列结论正确的是( ) A.64的立方根是±4 B.﹣没有立方根 C.立方根等于本身的数是0 D.=﹣3 7.如图,直线,E为上一点,G为上一点,,垂足为F,若,则的度数为( ) A. B. C. D. 8.如图,在平面直角坐标系中有点,点第一次向左跳动至,第二次向右跳动至,第三次向左跳动至,第四次向右跳动至,…依照此规律跳动下去,点第2020次跳动至的坐标为( ) A. B. C. D. 九、填空题 9.如果,的平方根是,则__________. 十、填空题 10.已知点在第四象限,,则点A关于y轴对称的坐标是__________. 十一、填空题 11.如图,△ABC中∠BAC=60°,将△ACD沿AD折叠,使得点C落在AB上的点C′处,连接C′D与C′C,∠ACB的角平分线交AD于点E;如果BC′=DC′;那么下列结论:①∠1=∠2;②AD垂直平分C′C;③∠B=3∠BCC′;④DC∥EC;其中正确的是:________;(只填写序号) 十二、填空题 12.如图,a∥b,∠1=68°,∠2=42°,则∠3=_____________. 十三、填空题 13.如图,把一张长方形纸片沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若,则____________,____________. 十四、填空题 14.观察下列等式:1﹣=,2﹣=,3﹣=,4﹣=,…,根据你发现的规律,则第20个等式为_____. 十五、填空题 15.已知点A在x轴上方,y轴左侧,到x轴的距离是3,到y轴的距离是4,那么点A的坐标是______________. 十六、填空题 16.如图,每一个小正方形的边长为1个单位长,一只蚂蚁从格点.A出发,沿着A→B→C→D→A→B→...路径循环爬行,当爬行路径长为2020个单位长时,蚂蚁所在格点坐标为___. 十七、解答题 17.计算: (1) (2) 十八、解答题 18.求下列各式中x的值. (1)4x2=64; (2)3(x﹣1)3+24=0. 十九、解答题 19.如图,∠1=∠2,∠3=∠C,∠4=∠5.请说明BF//DE的理由.(请在括号中填上推理依据) 解:∵∠1=∠2(已知) ∴CF//BD( ) ∴∠3+∠CAB=180°( ) ∵∠3=∠C(已知) ∴∠C+∠CAB=180°(等式的性质) ∴AB//CD( ) ∴∠4=∠EGA(两直线平行,同位角相等) ∵∠4=∠5(已知) ∴∠5=∠EGA(等量代换) ∴ED//FB( ) 二十、解答题 20.在平面直角坐标系中,为坐标原点,点的坐标为,点坐标为,且满足. (1)若没有平方根,且点到轴的距离是点到轴距离的倍,求点的坐标; (2)点的坐标为,的面积是的倍,求点的坐标. 二十一、解答题 21.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而<2,于是可用来表示的小数部分.请解答下列问题: (1)的整数部分是_______,小数部分是_________; (2)如果的小数部分为的整数部分为求的值. 二十二、解答题 22.如图1,用两个边长相同的小正方形拼成一个大的正方形. (1)如图2,若正方形纸片的面积为1,则此正方形的对角线AC的长为 dm. (2)如图3,若正方形的面积为16,李明同学想沿这块正方形边的方向裁出一块面积为12的长方形纸片,使它的长和宽之比为3∶2,他能裁出吗?请说明理由. 二十三、解答题 23.如图1,已知直线CD∥EF,点A,B分别在直线CD与EF上.P为两平行线间一点. (1)若∠DAP=40°,∠FBP=70°,则∠APB= (2)猜想∠DAP,∠FBP,∠APB之间有什么关系?并说明理由; (3)利用(2)的结论解答: ①如图2,AP1,BP1分别平分∠DAP,∠FBP,请你写出∠P与∠P1的数量关系,并说明理由; ②如图3,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代数式表示) 二十四、解答题 24.如图1,点O在上,,射线交于点C,已知m,n满足:. (1)试说明//的理由; (2)如图2,平分,平分,直线、交于点E,则______; (3)若将绕点O逆时针旋转,其余条件都不变,在旋转过程中,的度数是否发生变化?请说明你的结论. 二十五、解答题 25.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°. (1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数; (2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN与CD相交于点E,求∠CEN的度数; (3)将图①中的三角板OMN绕点O按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第____________秒时,直线MN恰好与直线CD垂直.(直接写出结果) 【参考答案】 一、选择题 1.B 解析:B 【分析】 利用“三线八角”的定义分别判断后即可确定正确的选项. 【详解】 解:A、∠1和∠2是同旁内角,故错误; B、∠1和∠2是同旁内角,正确; C、∠1和∠5不是同位角,故错误; D、∠1和∠4不是同旁内角,故错误, 故选:B. 【点睛】 本题考查了同位角、内错角及同旁内角的定义,解题的关键是了解三类角的定义,难度不大. 2.A 【分析】 根据平移的特点可得答案. 【详解】 解:A、树枝随着春风摇曳是旋转运动; B、值日学生拉动可移动黑板是平移运动; C、行政楼电梯的升降是平移运动; D、晚自修后学生两列队伍整齐排列笔直 解析:A 【分析】 根据平移的特点可得答案. 【详解】 解:A、树枝随着春风摇曳是旋转运动; B、值日学生拉动可移动黑板是平移运动; C、行政楼电梯的升降是平移运动; D、晚自修后学生两列队伍整齐排列笔直前行是平移运动; 故选A. 【点睛】 此题主要考查了生活中的平移现象,关键是掌握平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等. 3.A 【分析】 首先得出第四象限点的坐标性质,进而得出Q点的位置. 【详解】 解:∵点P(a,b)在第四象限, ∴a>0,b<0, ∴-b>0, ∴点Q(-b,a)在第一象限. 故选:A. 【点睛】 此题主要考查了点的坐标,正确把握各象限点的坐标特点是解题关键. 4.D 【分析】 根据平行线的判定定理逐项分析即可判断. 【详解】 A. 同旁内角互补,两直线平行,是真命题,不符合题意; B. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行,是真命题,不符合题意; C. 在同一平面内,过一点有且只有一条直线与已知直线垂直,是真命题,不符合题意; D. 在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故D选项是假命题,符合题意; 故选D 【点睛】 本题考查了真假命题的判断,掌握相关定理与性质是解题的关键. 5.C 【分析】 根据平行线的判定定理对四个选项进行逐一判断即可. 【详解】 解:A、若∠EAD=∠B,则AD∥BC,故此选项错误; B、若∠BAD=∠BCD,不可能得到BE∥CD,故此选项错误; C、若∠EAD=∠ADC,可得到BE∥CD,故此选项正确; D、若∠BCD+∠D=180°,则BC∥AD,故此选项错误. 故选:C. 【点睛】 本题考查了平行线的判定定理,熟练掌握平行线的判定方法是解题的关键. 6.D 【分析】 利用立方根的定义及求法分别判断后即可确定正确的选项. 【详解】 解:A、64的立方根是4,原说法错误,故这个选项不符合题意; B、﹣的立方根为﹣,原说法错误,故这个选项不符合题意; C、立方根等于本身的数是0和±1,原说法错误,故这个选项不符合题意; D、=﹣3,原说法正确,故这个选项符合题意; 故选:D. 【点睛】 本题考查了立方根的应用,注意:一个正数有一个正的立方根、0的立方根是0,一个负数有一个负的立方根. 7.C 【分析】 根据内角和定理可知的度数,再根据平行线的性质即可求得的度数. 【详解】 ∵ ∴ ∵ ∴ ∵ ∴. 故选:C 【点睛】 本题主要考查了三角形内角和定理及平行线的性质,熟练掌握相关角度计算方法是解决本题的关键. 8.A 【分析】 根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可. 【详解】 解:如图, 解析:A 【分析】 根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可. 【详解】 解:如图,观察发现,第2次跳动至点的坐标是, 第4次跳动至点的坐标是, 第6次跳动至点的坐标是, 第8次跳动至点的坐标是, 第次跳动至点的坐标是, 则第2020次跳动至点的坐标是, 故选:A. 【点睛】 本题考查了规律型:点的坐标,坐标与图形的性,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键. 九、填空题 9.-4 【分析】 根据题意先求出 ,再代入,即可. 【详解】 解:∵的平方根是, ∴ , ∴ , ∴, 故答案为: 【点睛】 本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值. 解析:-4 【分析】 根据题意先求出 ,再代入,即可. 【详解】 解:∵的平方根是, ∴ , ∴ , ∴, 故答案为: 【点睛】 本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值. 十、填空题 10.【分析】 由第四象限点的坐标符号是(+,-),可得,关于y轴对称的点,纵坐标相同,横坐标互为相反数,即可求解. 【详解】 解:因为在第四象限,则,所以, 又因为关于y轴对称,x值相反,y值不变, 解析: 【分析】 由第四象限点的坐标符号是(+,-),可得,关于y轴对称的点,纵坐标相同,横坐标互为相反数,即可求解. 【详解】 解:因为在第四象限,则,所以, 又因为关于y轴对称,x值相反,y值不变, 所以点A关于y轴对称点坐标为. 故答案为. 【点睛】 本题考查点的坐标的意义和对称的特点.关键是掌握点的坐标的变化规律. 十一、填空题 11.①②④ 【分析】 根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可 【详解】 解:如图,∵△ACD沿AD折叠,使得点C落在AB上的点C′处, ∴∠1=∠2,A=AC,DC 解析:①②④ 【分析】 根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可 【详解】 解:如图,∵△ACD沿AD折叠,使得点C落在AB上的点C′处, ∴∠1=∠2,A=AC,DC=D, ∴AD垂直平分C′C; ∴①,②都正确; ∵B=D, DC=D, ∴B=D= DC, ∴∠3=∠B,∠4=∠5, ∴∠3=∠4+∠5=2∠5即∠B=2∠BC; ∴③错误; 根据折叠的性质,得∠ACD=∠AD=∠B+∠3=2∠3, ∵∠ACB的角平分线交AD于点E, ∴2(∠6+∠5)=2∠B, ∴ ∴D ∥EC ∴④正确; 故答案为:①②④. 【点睛】 本题考查了折叠的性质,平行线的判定,外角的性质,线段垂直平分线的性质,熟练掌握各种基本性质是解题的关键. 十二、填空题 12.110° 【分析】 如图,利用平行线的性质,求得∠4=∠5=∠1,计算∠2+∠5,再次利用平行线的性质,得到∠3=∠2+∠5. 【详解】 如图,∵a∥b, ∴∠4=∠1=68°, ∴∠5=∠4=68 解析:110° 【分析】 如图,利用平行线的性质,求得∠4=∠5=∠1,计算∠2+∠5,再次利用平行线的性质,得到∠3=∠2+∠5. 【详解】 如图,∵a∥b, ∴∠4=∠1=68°, ∴∠5=∠4=68°, ∵∠2=42°, ∴∠5+∠2=68°+42°=110°, ∵a∥b, ∴∠3=∠2+∠5, ∴∠3=110°, 故答案为:110°. 【点睛】 本题考查了平行线的性质,对顶角相等,熟练掌握平行线的性质,对顶角相等是解题的关键. 十三、填空题 13.68°; 112°. 【分析】 首先根据折叠的性质和平行线的性质求∠FED的度数,然后根据平角的定义求出∠1的度数,最后根据平行线的性质求出∠2的度数. 【详解】 解:∵延折叠得到, 解析:68°; 112°. 【分析】 首先根据折叠的性质和平行线的性质求∠FED的度数,然后根据平角的定义求出∠1的度数,最后根据平行线的性质求出∠2的度数. 【详解】 解:∵延折叠得到, ∴, ∵,, ∴(两直线平行,内错角相等), ∴, ∴, 又∵, ∴, ∴. 综上,. 故答案为:68°;112°. 【点睛】 本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图是解题的关键. 十四、填空题 14.20﹣. 【分析】 观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案. 【详解】 观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为 等式右边的 解析:20﹣. 【分析】 观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案. 【详解】 观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为 等式右边的规律为:分子为,分母为 归纳类推得:第n个等式为(n为正整数) 当时,这个等式为,即 故答案为:. 【点睛】 本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键. 十五、填空题 15.(-4,3) . 【分析】 到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值. 【详解】 解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数. 所以点A的坐 解析:(-4,3) . 【分析】 到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值. 【详解】 解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数. 所以点A的坐标为(-4,3) 故答案为:(-4,3) . 【点睛】 本题考查点的坐标,利用数形结合思想解题是关键. 十六、填空题 16.(2,2) 【分析】 由格点确定点A、B、C的坐标,从而得出AB、BC的长度,从而可找出爬行一圈的长度,再根据2020=126×16+4,即可得出当蚂蚁爬了2020个单位时,它所处位置的坐标. 【详 解析:(2,2) 【分析】 由格点确定点A、B、C的坐标,从而得出AB、BC的长度,从而可找出爬行一圈的长度,再根据2020=126×16+4,即可得出当蚂蚁爬了2020个单位时,它所处位置的坐标. 【详解】 解:∵A点坐标为(−2,2),B点坐标为(3,2),C点坐标为(3,−1), ∴AB=3−(−2)=5,BC=2−(−1)=3, ∴从A→B→C→D→A→B→…一圈的长度为2(AB+BC)=16. ∵2020=126×16+4, ∴当蚂蚁爬了2020个单位时,它所处位置在点A右边4个单位长度处,即(2,2). 故答案为:(2,2). 【点睛】 本题考查了规律型中点的坐标以及矩形的性质,根据蚂蚁的运动规律找出蚂蚁每运动16个单位长度是一圈. 十七、解答题 17.(1);(2) 【分析】 (1)根据算术平方根,立方根的求法结合实数混合运算法则计算即可; (2)先根据绝对值的意义化简绝对值,然后根据算术平方根的求法以及实数混合运算法则计算即可. 【详解】 解: 解析:(1);(2) 【分析】 (1)根据算术平方根,立方根的求法结合实数混合运算法则计算即可; (2)先根据绝对值的意义化简绝对值,然后根据算术平方根的求法以及实数混合运算法则计算即可. 【详解】 解:(1)原式==; (2)原式=. 【点睛】 本题考查了实数的混合运算,算术平方根以及立方根的求法,绝对值等知识点,题目比较基础,熟练掌握基础知识点是关键. 十八、解答题 18.(1)x=±4;(2)x=-1 【分析】 (1)根据平方根的定义解方程即可; (2)根据立方根的定义解方程即可. 【详解】 解:(1)4x2=64, ∴x2=16, ∴x=±4; (2)3(x-1) 解析:(1)x=±4;(2)x=-1 【分析】 (1)根据平方根的定义解方程即可; (2)根据立方根的定义解方程即可. 【详解】 解:(1)4x2=64, ∴x2=16, ∴x=±4; (2)3(x-1)3+24=0, ∴3(x-1)3=-24, ∴(x-1)3=-8, ∴x-1=-2, ∴x=-1. 【点睛】 本题主要考查了平方根和立方根,解题时注意一个正数的平方根有两个,不要漏解. 十九、解答题 19.内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行 【分析】 运用平行线的性质定理和判定定理可得结论. 【详解】 解:(已知) (内错角相等,两直线平 解析:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行 【分析】 运用平行线的性质定理和判定定理可得结论. 【详解】 解:(已知) (内错角相等,两直线平行), (两直线平行,同旁内角互补), (已知), (等式的性质), (同旁内角互补,两直线平行), (两直线平行,同位角相等), (已知), (等量代换), (同位角相等,两直线平行). 故答案为:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行. 【点睛】 本题主要考查了平行线的判定定理和性质定理,熟悉相关性质是解答此题的关键. 二十、解答题 20.(1)(-2,6);(2)(,)或(8,-4) 【分析】 (1)根据平方根的意义得到a<0,再利用点B到x轴的距离是点A到x轴距离的3倍得到方程,解之得到a值,可写出B点坐标; (2)利用A(a,- 解析:(1)(-2,6);(2)(,)或(8,-4) 【分析】 (1)根据平方根的意义得到a<0,再利用点B到x轴的距离是点A到x轴距离的3倍得到方程,解之得到a值,可写出B点坐标; (2)利用A(a,-a)和B(a,4-a)得到AB=4,AB与y轴平行,由于点D的坐标为(4,-2),△OAB的面积是△DAB面积的2倍,则判断点A、点B在y轴的右侧,即a>0,根据三角形面积公式得到,解方程得到a值,然后写出B点坐标. 【详解】 解:(1)∵a没有平方根, ∴a<0, ∴-a>0, ∵点B到x轴的距离是点A到x轴距离的3倍, ∴, ∵a+b=4, ∴, 解得:a=-2或a=1(舍), ∴b=6,此时点B的坐标为(-2,6); (2)∵点A的坐标为(a,-a),点B坐标为(a,4-a), ∴AB=4,AB与y轴平行, ∵点D的坐标为(4,-2),△OAB的面积是△DAB面积的2倍, ∴点A、点B在y轴的右侧,即a>0, ∴, 解得:a=或a=8, ∴B点坐标为(,)或(8,-4). 【点睛】 本题考查了坐标与图形性质:利用点的坐标计算线段的长和判断线段与坐标轴的位置关系.也考查了三角形的面积公式和平方根的性质. 二十一、解答题 21.(1)5;-5(2)0 【分析】 (1)先估算出的范围,即可得出答案; (2)先估算出、的范围,求出a、b的值,再代入求出即可. 【详解】 (1)∵5<<6, ∴的整数部分是5,小数部分是-5, 故 解析:(1)5;-5(2)0 【分析】 (1)先估算出的范围,即可得出答案; (2)先估算出、的范围,求出a、b的值,再代入求出即可. 【详解】 (1)∵5<<6, ∴的整数部分是5,小数部分是-5, 故答案为:5;-5; (2)∵3<<4, ∴a=-3, ∵3<<4, ∴b=3, ∴=-3+3-=0. 【点睛】 本题考查了估算无理数的大小,能估算出、、的范围是解此题的关键. 二十二、解答题 22.(1);(2)不能,理由见解析 【分析】 (1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长; (2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可. 【详解】 解: 解析:(1);(2)不能,理由见解析 【分析】 (1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长; (2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可. 【详解】 解:(1)∵正方形纸片的面积为, ∴正方形的边长, ∴. 故答案为:. (2)不能; 根据题意设长方形的长和宽分别为和. ∴长方形面积为:, 解得:, ∴长方形的长边为. ∵, ∴他不能裁出. 【点睛】 本题考查了算术平方根在长方形和正方形面积中的应用,灵活的进行算术平方根计算及无理数大小比较是解题的关键. 二十三、解答题 23.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=. 【分析】 (1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM= 解析:(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=. 【分析】 (1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证; (2)结论:∠APB=∠DAP+∠FBP. (3)①根据(2)的规律和角平分线定义解答; ②根据①的规律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根据角平分线的定义和平角等于180°列式整理即可得解. 【详解】 (1)证明:过P作PM∥CD, ∴∠APM=∠DAP.(两直线平行,内错角相等), ∵CD∥EF(已知), ∴PM∥CD(平行于同一条直线的两条直线互相平行), ∴∠MPB=∠FBP.(两直线平行,内错角相等), ∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质) 即∠APB=∠DAP+∠FBP=40°+70°=110°. (2)结论:∠APB=∠DAP+∠FBP. 理由:见(1)中证明. (3)①结论:∠P=2∠P1; 理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1, ∵∠DAP=2∠DAP1,∠FBP=2∠FBP1, ∴∠P=2∠P1. ②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2, ∵AP2、BP2分别平分∠CAP、∠EBP, ∴∠CAP2=∠CAP,∠EBP2=∠EBP, ∴∠AP2B=∠CAP+∠EBP, = (180°-∠DAP)+ (180°-∠FBP), =180°- (∠DAP+∠FBP), =180°- ∠APB, =180°- β. 【点睛】 本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线. 二十四、解答题 24.(1)见解析;(2)45;(3)不变,见解析; 【分析】 (1)由可求得m及n,从而可求得∠MOC=∠OCQ,则可得结论; (2)易得∠AON的度数,由两条角平分线,可得∠DON,∠OCF的度数,也 解析:(1)见解析;(2)45;(3)不变,见解析; 【分析】 (1)由可求得m及n,从而可求得∠MOC=∠OCQ,则可得结论; (2)易得∠AON的度数,由两条角平分线,可得∠DON,∠OCF的度数,也易得∠COE的度数,由三角形外角的性质即可求得∠OEF的度数; (3)不变,分三种情况讨论即可. 【详解】 (1)∵,,且 ∴, ∴m=20,n=70 ∴∠MOC=90゜-∠AOM=70゜ ∴∠MOC=∠OCQ=70゜ ∴MN∥PQ (2)∵∠AON=180゜-∠AOM=160゜ 又∵平分,平分 ∴, ∵ ∴ ∴∠OEF=∠OCF+∠COE=35゜+10゜=45゜ 故答案为:45. (3)不变,理由如下: 如图,当0゜<α<20゜时, ∵CF平分∠OCQ ∴∠OCF=∠QCF 设∠OCF=∠QCF=x 则∠OCQ=2x ∵MN∥PQ ∴∠MOC=∠OCQ=2x ∵∠AON=360゜-90゜—(180゜-2x)=90゜+2x,OD平分∠AON ∴∠DON=45゜+x ∵∠MOE=∠DON=45゜+x ∴∠COE=∠MOE-∠MOC=45゜+x-2x=45゜-x ∴∠OEF=∠COE+∠OCF=45゜-x+x=45゜ 当α=20゜时,OD与OB共线,则∠OCQ=90゜,由CF平分∠OCQ知,∠OEF=45゜ 当20゜<α<90゜时,如图 ∵CF平分∠OCQ ∴∠OCF=∠QCF 设∠OCF=∠QCF=x 则∠OCQ=2x ∵MN∥PQ ∴∠NOC=180゜-∠OCQ=180゜-2x ∵∠AON=90゜+(180゜-2x)=270゜-2x,OD平分∠AON ∴∠AOE=135゜-x ∴∠COE=90゜-∠AOE=90゜-(135゜-x)=x-45゜ ∴∠OEF=∠OCF-∠COE=x-(x-45゜)=45゜ 综上所述,∠EOF的度数不变. 【点睛】 本题主要考查了角平分线的定义,平行线的判定与性质,角的和差关系,注意分类讨论,引入适当的量便于运算简便. 二十五、解答题 25.(1)105°;(2)135°;(3)5.5或11.5. 【分析】 (1)在△CEN中,用三角形内角和定理即可求出; (2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角 解析:(1)105°;(2)135°;(3)5.5或11.5. 【分析】 (1)在△CEN中,用三角形内角和定理即可求出; (2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角互补即可求出∠CEN的度数. (3)画出图形,求出在MN⊥CD时的旋转角,再除以30°即得结果. 【详解】 解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°; (2)∵∠BON=30°,∠N=30°, ∴∠BON=∠N, ∴MN∥CB. ∴∠OCD+∠CEN=180°, ∵∠OCD=45° ∴∠CEN=180°-45°=135°; (3)如图,MN⊥CD时,旋转角为360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒时,直线MN恰好与直线CD垂直. 【点睛】 本题以学生熟悉的三角板为载体,考查了三角形的内角和、平行线的判定和性质、垂直的定义和旋转的性质,前两小题难度不大,难点是第(3)小题,解题的关键是画出适合题意的几何图形,弄清求旋转角的思路和方法,本题的第一种情况是将旋转角∠DOM放在四边形DOMF中,用四边形内角和求解,第二种情况是用周角减去∠DOM的度数.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2024 年人教版七 年级 下册 数学 期末 综合 复习 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文