傅里叶积分变换.ppt
《傅里叶积分变换.ppt》由会员分享,可在线阅读,更多相关《傅里叶积分变换.ppt(66页珍藏版)》请在咨信网上搜索。
1、 积分变换积分变换.第六章第六章 傅氏变换傅氏变换返回前进1 傅里叶(傅里叶(Fourier)积分变换)积分变换 2 拉普拉斯拉普拉斯(Laplace)积分变换积分变换 主要内容注:积分变换的学习中,规定:注:积分变换的学习中,规定:1 傅里叶(傅里叶(Fourier)积)积分变换分变换.第六章第六章 傅氏变换傅氏变换返回前进傅里叶变换傅里叶变换又简称为傅氏变换又简称为傅氏变换 内容:内容:傅氏变换概念傅氏变换概念卷积与相关函数卷积与相关函数 傅氏变换性质傅氏变换性质 第六章第六章 傅氏变换傅氏变换返回前进一、傅氏变换一、傅氏变换1傅氏积分定理傅氏积分定理 若f(t)在(-,+)上满足下列条件
2、:(1)f(t)在任一有限区间上满足条件:f(t)至多有有限个第一类间断点和极值点;(2)f(t)在无限区间(-,+)上绝对可积(即积分 收敛),则有(1)成立,而左端的f(t)在它的间断点t处,应以来代替。第六章第六章 傅氏变换傅氏变换返回前进2傅氏变换的概念傅氏变换的概念 若函数f(t)满足傅氏积分定理中的条件,则在f(t)的连续点处,式(1)成立。设 则(2)(3)第六章第六章 傅氏变换傅氏变换返回前进从上面两式可以看出,f(t)和F()通过指定的积分运算可以相互表达。将(2)式叫做的傅氏变换式傅氏变换式,记为 F()叫做f(t)的象函数象函数,(3)式叫做F()的傅氏逆傅氏逆变换式变换
3、式,记为 f(t)叫做F()的象原函数象原函数。(2)式右端的积分运算,叫做取f(t)的傅氏变换;(3)式右端的积分运算,叫做取F()的傅氏逆 变换。象函数F()和象原函数f(t)构成一个 傅氏变换对。F F-1 第六章第六章 傅氏变换傅氏变换返回前进3例子例子例例1 求指数衰减函数函数 的傅氏变换及其积分表达式,其中0。第六章第六章 傅氏变换傅氏变换返回前进解:根据(2)式,傅氏变换为 F 第六章第六章 傅氏变换傅氏变换返回前进通过傅氏逆变换,可求得指数衰减函数的积分表达式。由(3)式,并利用奇偶数的积分性质,可得 第六章第六章 傅氏变换傅氏变换返回前进 第六章第六章 傅氏变换傅氏变换返回前
4、进由傅氏积分定理,可得到一个含参量广义积分的结果:第六章第六章 傅氏变换傅氏变换返回前进4单位脉冲函数(狄拉克单位脉冲函数(狄拉克-Dirac函数)函数)设 定义单位脉冲函数为 第六章第六章 傅氏变换傅氏变换返回前进单位脉冲函数的一些性质:若f(t)为无穷可微的函数,则 a.b.证明 记 更一般地有更一般地有 第六章第六章 傅氏变换傅氏变换返回前进单位脉冲函数的傅氏变换 c.证明 F F 第六章第六章 傅氏变换傅氏变换返回前进例例3 证明单位阶跃函数 变换为 的傅氏解:只需证明 的傅氏逆变换为u(t)。F-1 第六章第六章 傅氏变换傅氏变换返回前进由于 故 第六章第六章 傅氏变换傅氏变换返回前
5、进这表明 的傅氏逆变换为u(t)。u(t)和 构成了一个傅氏变换对。同时得到单位阶跃函数u(t)的一个积分表达式第六章第六章 傅氏变换傅氏变换返回前进所以1和 构成了一个傅氏变换对;和 也构成了一个傅氏变换对。类似的方法可得F-1 F-1 第六章第六章 傅氏变换傅氏变换返回前进例例4 求正弦函数 的傅氏变换。解:F 第六章第六章 傅氏变换傅氏变换返回前进我们可以看出引入-函数后,一些在普通意义下不存在的积分,有了确定的数值。工程技术上许多重要函数的傅氏变换都可以利用-函数及其傅氏变换很方便地表示出来,并且使许多变换的推导大大地简化。第六章第六章 傅氏变换傅氏变换返回前进5非周期函数的频谱非周期
6、函数的频谱 傅氏变换和频谱概念有着非常密切的关系,这里只简单地介绍一下非周期函数频谱的基本概念。在频谱分析中,当非周期函数f(t)满足傅氏积分定理中的条件时,将f(t)的傅氏变换F()称为f(t)的频谱函数频谱函数,而频谱函数的模|F()|称为f(t)的振幅频谱(振幅频谱(亦简称为频谱频谱)。对一个时间函数作傅氏变换,就可求出这个时间函数的频谱。由于F()是随连续变化的,因而称|F()|为连续频谱连续频谱。第六章第六章 傅氏变换傅氏变换返回前进例例5 作出图1-8中所示的单个矩形脉冲的频谱图。图1-8 第六章第六章 傅氏变换傅氏变换返回前进解 根据定义,单个矩形脉冲的频谱函数为 振幅频谱 部分
7、的频谱图如图1-9所示。第六章第六章 傅氏变换傅氏变换返回前进图1-9 第六章第六章 傅氏变换傅氏变换返回前进振幅频谱|F()|的一个性质:振幅频谱|F()|是频率的偶函数,即 事实上,所以显然有 第六章第六章 傅氏变换傅氏变换返回前进记 称 为f(t)的相角频谱相角频谱。可看出,相角频谱 是的奇函数,即 第六章第六章 傅氏变换傅氏变换返回前进例例6 求指数衰减函数 的频谱。解 根据例1的结果,所以指数衰减函数的频谱 第六章第六章 傅氏变换傅氏变换返回前进例例7 作单位脉冲函数 及其频谱图。解 由于 所以单位脉冲函数的频谱 及其频谱图表示在图1-11中。图1-11 第六章第六章 傅氏变换傅氏变
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 傅里叶 积分 变换
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。