人教版中学七年级数学下册期末解答题综合复习卷(及答案).doc
《人教版中学七年级数学下册期末解答题综合复习卷(及答案).doc》由会员分享,可在线阅读,更多相关《人教版中学七年级数学下册期末解答题综合复习卷(及答案).doc(34页珍藏版)》请在咨信网上搜索。
人教版中学七年级数学下册期末解答题综合复习卷(及答案) 一、解答题 1.(1)若一圆的面积与这个正方形的面积都是,设圆的周长为,正方形的周长为,则______.(填“=”或“<”或“>”号) (2)如图,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由. 2.已知在的正方形网格中,每个小正方形的边长为1. (1)计算图①中正方形的面积与边长. (2)利用图②中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数和. 3.如图,这是由8个同样大小的立方体组成的魔方,体积为64. (1)求出这个魔方的棱长; (2)图中阴影部分是一个正方形ABCD,求出阴影部分的边长. 4.如图,8块相同的小长方形地砖拼成一个大长方形, (1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答) (2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗? 5.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m2的正方形场地改建成300m2的长方形场地,且其长、宽的比为5:3. (1)求原来正方形场地的周长; (2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由. 二、解答题 6.如图,直线AB∥直线CD,线段EF∥CD,连接BF、CF. (1)求证:∠ABF+∠DCF=∠BFC; (2)连接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求证:CE平分∠BCD; (3)在(2)的条件下,G为EF上一点,连接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度数. 7.已知,AB∥CD,点E在CD上,点G,F在AB上,点H在AB,CD之间,连接FE,EH,HG,∠AGH=∠FED,FE⊥HE,垂足为E. (1)如图1,求证:HG⊥HE; (2)如图2,GM平分∠HGB,EM平分∠HED,GM,EM交于点M,求证:∠GHE=2∠GME; (3)如图3,在(2)的条件下,FK平分∠AFE交CD于点K,若∠KFE:∠MGH=13:5,求∠HED的度数. 8.如图,,直线与、分别交于点、,点在直线上,过点作,垂足为点. (1)如图1,求证:; (2)若点在线段上(不与、、重合),连接,和的平分线交于点请在图2中补全图形,猜想并证明与的数量关系; 9.阅读下面材料: 小亮同学遇到这样一个问题: 已知:如图甲,ABCD,E为AB,CD之间一点,连接BE,DE,得到∠BED. 求证:∠BED=∠B+∠D. (1)小亮写出了该问题的证明,请你帮他把证明过程补充完整. 证明:过点E作EFAB, 则有∠BEF= . ∵ABCD, ∴ , ∴∠FED= . ∴∠BED=∠BEF+∠FED=∠B+∠D. (2)请你参考小亮思考问题的方法,解决问题:如图乙, 已知:直线ab,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E. ①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数; ②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示). 10.已知直线,点P为直线、所确定的平面内的一点. (1)如图1,直接写出、、之间的数量关系 ; (2)如图2,写出、、之间的数量关系,并证明; (3)如图3,点E在射线上,过点E作,作,点G在直线上,作的平分线交于点H,若,,求的度数. 三、解答题 11.为更好地理清平行线相关角的关系,小明爸爸为他准备了四根细直木条、、、,做成折线,如图1,且在折点B、C、D处均可自由转出. (1)如图2,小明将折线调节成,,,判断是否平行于,并说明理由; (2)如图3,若,调整线段、使得求出此时的度数,要求画出图形,并写出计算过程. (3)若,,,请直接写出此时的度数. 12.已知,如图①,∠BAD=50°,点C为射线AD上一点(不与A重合),连接BC. (1)[问题提出]如图②,AB∥CE,∠BCD=73 °,则:∠B= . (2)[类比探究]在图①中,探究∠BAD、∠B和∠BCD之间有怎样的数量关系?并用平行线的性质说明理由. (3)[拓展延伸]如图③,在射线BC上取一点O,过O点作直线MN使MN∥AD,BE平分∠ABC交AD于E点,OF平分∠BON交AD于F点,交AD于G点,当C点沿着射线AD方向运动时,∠FOG的度数是否会变化?若变化,请说明理由;若不变,请求出这个不变的值. 13.已知点A,B,O在一条直线上,以点O为端点在直线AB的同一侧作射线,,使. (1)如图①,若平分,求的度数; (2)如图②,将绕点O按逆时针方向转动到某个位置时,使得所在射线把分成两个角. ①若,求的度数; ②若(n为正整数),直接用含n的代数式表示. 14.综合与探究 综合与实践课上,同学们以“一个含角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线,,且,三角形是直角三角形,,, 操作发现: (1)如图1.,求的度数; (2)如图2.创新小组的同学把直线向上平移,并把的位置改变,发现,请说明理由. 实践探究: (3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,平分,此时发现与又存在新的数量关系,请写出与的数量关系并说明理由. 15.如图1,,在、内有一条折线. (1)求证:; (2)在图2中,画的平分线与的平分线,两条角平分线交于点,请你补全图形,试探索与之间的关系,并证明你的结论; (3)在(2)的条件下,已知和均为钝角,点在直线、之间,且满足,,(其中为常数且),直接写出与的数量关系. 四、解答题 16.在△ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE∥AC交AB于点E. (1)如图1,点D在线段CG上运动时,DF平分∠EDB ①若∠BAC=100°,∠C=30°,则∠AFD= ;若∠B=40°,则∠AFD= ; ②试探究∠AFD与∠B之间的数量关系?请说明理由; (2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由 17.解读基础: (1)图1形似燕尾,我们称之为“燕尾形”,请写出、、、之间的关系,并说明理由; (2)图2形似8字,我们称之为“八字形”,请写出、、、之间的关系,并说明理由: 应用乐园:直接运用上述两个结论解答下列各题 (3)①如图3,在中,、分别平分和,请直接写出和的关系 ; ②如图4, . (4)如图5,与的角平分线相交于点,与的角平分线相交于点,已知,,求和的度数. 18.如图,直线m与直线n互相垂直,垂足为O、A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动. (1)若∠BAO和∠ABO的平分线相交于点Q,在点A,B的运动过程中,∠AQB的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由. (2)若AP是∠BAO的邻补角的平分线,BP是∠ABO的邻补角的平分线,AP、BP相交于点P,AQ的延长线交PB的延长线于点C,在点A,B的运动过程中,∠P和∠C的大小是否会发生变化?若不发生变化,请求出∠P和∠C的度数;若发生变化,请说明理由. 19.如图,△ABC和△ADE有公共顶点A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°. (1)若DE//AB,则∠EAC= ; (2)如图1,过AC上一点O作OG⊥AC,分别交AB、AD、AE于点G、H、F. ①若AO=2,S△AGH=4,S△AHF=1,求线段OF的长; ②如图2,∠AFO的平分线和∠AOF的平分线交于点M,∠FHD的平分线和∠OGB的平分线交于点N,∠N+∠M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由. 20.如图①所示,在三角形纸片中,,,将纸片的一角折叠,使点落在内的点处. (1)若,________. (2)如图①,若各个角度不确定,试猜想,,之间的数量关系,直接写出结论. ②当点落在四边形外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,,,之间又存在什么关系?请说明. (3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的和是________. 【参考答案】 一、解答题 1.(1)<;(2)不能,理由见解析 【分析】 (1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案; (2)设裁出的长方形的长为,宽为,由题意得关于 解析:(1)<;(2)不能,理由见解析 【分析】 (1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案; (2)设裁出的长方形的长为,宽为,由题意得关于的方程,解得的值,从而可得长方形的长和宽,将其与正方形的边长比较,可得答案. 【详解】 解:(1)圆的面积与正方形的面积都是, 圆的半径为,正方形的边长为, ,, , , . (2)不能裁出长和宽之比为的长方形,理由如下: 设裁出的长方形的长为,宽为,由题意得: , 解得或(不合题意,舍去), 长为,宽为, 正方形的面积为, 正方形的边长为, , 不能裁出长和宽之比为的长方形. 【点睛】 本题考查了算术平方根在正方形和圆的面积及周长计算中的简单应用,熟练掌握相关计算公式是解题的关键. 2.(1)正方形的面积为10,正方形的边长为;(2)见解析 【分析】 (1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长; (2)根据(1)的方法画 解析:(1)正方形的面积为10,正方形的边长为;(2)见解析 【分析】 (1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长; (2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论. 【详解】 解:(1)正方形的面积为4×4-4××3×1=10 则正方形的边长为; (2)如下图所示,正方形的面积为4×4-4××2×2=8,所以该正方形即为所求,如图建立数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点 ∴正方形的边长为 ∴弧与数轴的左边交点为,右边交点为,实数和在数轴上如图所示. 【点睛】 此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键. 3.(1)棱长为4;(2)边长为:(或) 【分析】 (1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案. 【详解】 解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4. 解析:(1)棱长为4;(2)边长为:(或) 【分析】 (1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案. 【详解】 解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4. (2)因为正方体的棱长为4,所以AB=. 【点睛】 本题考查的是立方根与算术平方根的理解与计算,由实际的情境去理解问题本身就是求一个数的立方根与算术平方根是关键. 4.(1) 长是1.5m,宽是0.5m.;(2)不能. 【解析】 【分析】 (1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可; (2)把正方形的边长与大长方形的长比较即可. 【详解】 解: 解析:(1) 长是1.5m,宽是0.5m.;(2)不能. 【解析】 【分析】 (1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可; (2)把正方形的边长与大长方形的长比较即可. 【详解】 解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得: , 解得:, ∴长是1.5m,宽是0.5m. (2)∵正方形的面积为7平方米, ∴正方形的边长是米, ∵<3, ∴他不能剪出符合要求的桌布. 【点睛】 本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键. 5.(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用. 【分析】 (1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可; (2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为 解析:(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用. 【分析】 (1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可; (2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为5am,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用. 【详解】 解:(1)=20(m),4×20=80(m), 答:原来正方形场地的周长为80m; (2)设这个长方形场地宽为3am,则长为5am. 由题意有:3a×5a=300, 解得:a=±, ∵3a表示长度, ∴a>0, ∴a=, ∴这个长方形场地的周长为 2(3a+5a)=16a=16(m), ∵80=16×5=16×>16, ∴这些铁栅栏够用. 【点睛】 本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长. 二、解答题 6.(1)证明见解析;(2)证明见解析;(3)∠FBE=35°. 【分析】 (1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可; (2)由(1)的结论和垂直的定义解答即可; 解析:(1)证明见解析;(2)证明见解析;(3)∠FBE=35°. 【分析】 (1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可; (2)由(1)的结论和垂直的定义解答即可; (3)由(1)的结论和三角形的角的关系解答即可. 【详解】 证明:(1)∵AB∥CD,EF∥CD, ∴AB∥EF, ∴∠ABF=∠BFE, ∵EF∥CD, ∴∠DCF=∠EFC, ∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF; (2)∵BE⊥EC, ∴∠BEC=90°, ∴∠EBC+∠BCE=90°, 由(1)可得:∠BFC=∠ABE+∠ECD=90°, ∴∠ABE+∠ECD=∠EBC+∠BCE, ∵BE平分∠ABC, ∴∠ABE=∠EBC, ∴∠ECD=∠BCE, ∴CE平分∠BCD; (3)设∠BCE=β,∠ECF=γ, ∵CE平分∠BCD, ∴∠DCE=∠BCE=β, ∴∠DCF=∠DCE﹣∠ECF=β﹣γ, ∴∠EFC=β﹣γ, ∵∠BFC=∠BCF, ∴∠BFC=∠BCE+∠ECF=γ+β, ∴∠ABF=∠BFE=2γ, ∵∠FBG=2∠ECF, ∴∠FBG=2γ, ∴∠ABE+∠DCE=∠BEC=90°, ∴∠ABE=90°﹣β, ∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ, ∵BE平分∠ABC, ∴∠CBE=∠ABE=90°﹣β, ∴∠CBG=∠CBE+∠GBE, ∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ, 整理得:2γ+β=55°, ∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°. 【点睛】 本题主要考查平行线的性质,解决本题的关键是根据平行线的性质解答. 7.(1)见解析;(2)见解析;(3)40° 【分析】 (1)根据平行线的性质和判定解答即可; (2)过点H作HP∥AB,根据平行线的性质解答即可; (3)过点H作HP∥AB,根据平行线的性质解答即可. 解析:(1)见解析;(2)见解析;(3)40° 【分析】 (1)根据平行线的性质和判定解答即可; (2)过点H作HP∥AB,根据平行线的性质解答即可; (3)过点H作HP∥AB,根据平行线的性质解答即可. 【详解】 证明:(1)∵AB∥CD, ∴∠AFE=∠FED, ∵∠AGH=∠FED, ∴∠AFE=∠AGH, ∴EF∥GH, ∴∠FEH+∠H=180°, ∵FE⊥HE, ∴∠FEH=90°, ∴∠H=180°﹣∠FEH=90°, ∴HG⊥HE; (2)过点M作MQ∥AB, ∵AB∥CD, ∴MQ∥CD, 过点H作HP∥AB, ∵AB∥CD, ∴HP∥CD, ∵GM平分∠HGB, ∴∠BGM=∠HGM=∠BGH, ∵EM平分∠HED, ∴∠HEM=∠DEM=∠HED, ∵MQ∥AB, ∴∠BGM=∠GMQ, ∵MQ∥CD, ∴∠QME=∠MED, ∴∠GME=∠GMQ+∠QME=∠BGM+∠MED, ∵HP∥AB, ∴∠BGH=∠GHP=2∠BGM, ∵HP∥CD, ∴∠PHE=∠HED=2∠MED, ∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED), ∴∠GHE=∠2GME; (3)过点M作MQ∥AB,过点H作HP∥AB, 由∠KFE:∠MGH=13:5,设∠KFE=13x,∠MGH=5x, 由(2)可知:∠BGH=2∠MGH=10x, ∵∠AFE+∠BFE=180°, ∴∠AFE=180°﹣10x, ∵FK平分∠AFE, ∴∠AFK=∠KFE= ∠AFE, 即, 解得:x=5°, ∴∠BGH=10x=50°, ∵HP∥AB,HP∥CD, ∴∠BGH=∠GHP=50°,∠PHE=∠HED, ∵∠GHE=90°, ∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°, ∴∠HED=40°. 【点睛】 本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键. 8.(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,. 【分析】 (1)过点作,根据平行线的性质即可求解; (2)分两种情况:当点在上,当点在上,再过点作即可求解. 【详解】 (1)证明: 解析:(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,. 【分析】 (1)过点作,根据平行线的性质即可求解; (2)分两种情况:当点在上,当点在上,再过点作即可求解. 【详解】 (1)证明:如图,过点作, ∴, ∵, ∴. ∴. ∵, ∴, ∴. (2)补全图形如图2、图3, 猜想:或. 证明:过点作. ∴. ∵, ∴ ∴, ∴. ∵平分, ∴. 如图3,当点在上时, ∵平分, ∴, ∵, ∴, 即. 如图2,当点在上时, ∵平分, ∴. ∴. 即. 【点睛】 本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系. 9.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣ 【分析】 (1)根据平行线的判定定理与性质定理解答即可; (2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°, 解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣ 【分析】 (1)根据平行线的判定定理与性质定理解答即可; (2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考小亮思考问题的方法即可求∠BED的度数; ②如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考小亮思考问题的方法即可求出∠BED的度数. 【详解】 解:(1)过点E作EF∥AB, 则有∠BEF=∠B, ∵AB∥CD, ∴EF∥CD, ∴∠FED=∠D, ∴∠BED=∠BEF+∠FED=∠B+∠D; 故答案为:∠B;EF;CD;∠D; (2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA. ∵AB∥CD, ∴EF∥CD. ∴∠FED=∠EDC. ∴∠BEF+∠FED=∠EBA+∠EDC. 即∠BED=∠EBA+∠EDC, ∵BE平分∠ABC,DE平分∠ADC, ∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°, ∴∠BED=∠EBA+∠EDC=65°. 答:∠BED的度数为65°; ②如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°. ∴∠BEF=180°﹣∠EBA, ∵AB∥CD, ∴EF∥CD. ∴∠FED=∠EDC. ∴∠BEF+∠FED=180°﹣∠EBA+∠EDC. 即∠BED=180°﹣∠EBA+∠EDC, ∵BE平分∠ABC,DE平分∠ADC, ∴∠EBA=∠ABC=,∠EDC=∠ADC=, ∴∠BED=180°﹣∠EBA+∠EDC=180°﹣. 答:∠BED的度数为180°﹣. 【点睛】 本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质. 10.(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55° 【分析】 (1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360 解析:(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55° 【分析】 (1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360°; (2)作PQ∥AB,易得AB∥PQ∥CD,根据两直线平行,内错角相等,即可证得∠APC=∠A+∠C; (3)由(2)知,∠APC=∠PAB-∠PCD,先证∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根据∠PEH=∠PEG-∠GEH可得答案. 【详解】 解:(1)∠A+∠C+∠APC=360° 如图1所示,过点P作PQ∥AB, ∴∠A+∠APQ=180°, ∵AB∥CD, ∴PQ∥CD, ∴∠C+∠CPQ=180°, ∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°; (2)∠APC=∠A+∠C, 如图2,作PQ∥AB, ∴∠A=∠APQ, ∵AB∥CD, ∴PQ∥CD, ∴∠C=∠CPQ, ∵∠APC=∠APQ-∠CPQ, ∴∠APC=∠A-∠C; (3)由(2)知,∠APC=∠PAB-∠PCD, ∵∠APC=30°,∠PAB=140°, ∴∠PCD=110°, ∵AB∥CD, ∴∠PQB=∠PCD=110°, ∵EF∥BC, ∴∠BEF=∠PQB=110°, ∵EF∥BC, ∴∠BEF=∠PQB=110°, ∵∠PEG=∠PEF, ∴∠PEG=∠FEG, ∵EH平分∠BEG, ∴∠GEH=∠BEG, ∴∠PEH=∠PEG-∠GEH =∠FEG-∠BEG =∠BEF =55°. 【点睛】 此题考查了平行线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用. 三、解答题 11.(1)平行,理由见解析;(2)35°或145°,画图、过程见解析;(3)50°或130°或60°或120° 【分析】 (1)过点C作CF∥AB,根据∠B=50°,∠C=85°,∠D=35°,即可得C 解析:(1)平行,理由见解析;(2)35°或145°,画图、过程见解析;(3)50°或130°或60°或120° 【分析】 (1)过点C作CF∥AB,根据∠B=50°,∠C=85°,∠D=35°,即可得CF∥ED,进而可以判断AB平行于ED; (2)根据题意作AB∥CD,即可∠B=∠C=35°; (3)分别画图,根据平行线的性质计算出∠B的度数. 【详解】 解:(1)AB平行于ED,理由如下: 如图2,过点C作CF∥AB, ∴∠BCF=∠B=50°, ∵∠BCD=85°, ∴∠FCD=85°-50°=35°, ∵∠D=35°, ∴∠FCD=∠D, ∴CF∥ED, ∵CF∥AB, ∴AB∥ED; (2)如图,即为所求作的图形. ∵AB∥CD, ∴∠ABC=∠C=35°, ∴∠B的度数为:35°; ∵A′B∥CD, ∴∠ABC+∠C=180°, ∴∠B的度数为:145°; ∴∠B的度数为:35°或145°; (3)如图2,过点C作CF∥AB, ∵AB∥DE, ∴CF∥DE, ∴∠FCD=∠D=35°, ∵∠BCD=85°, ∴∠BCF=85°-35°=50°, ∴∠B=∠BCF=50°. 答:∠B的度数为50°. 如图5,过C作CF∥AB,则AB∥CF∥CD, ∴∠FCD=∠D=35°, ∵∠BCD=85°, ∴∠BCF=85°-35°=50°, ∵AB∥CF, ∴∠B+∠BCF=180°, ∴∠B=130°; 如图6,∵∠C=85°,∠D=35°, ∴∠CFD=180°-85°-35°=60°, ∵AB∥DE, ∴∠B=∠CFD=60°, 如图7,同理得:∠B=35°+85°=120°, 综上所述,∠B的度数为50°或130°或60°或120°. 【点睛】 本题考查了平行线的判定与性质,解决本题的关键是区分平行线的判定与性质,并熟练运用. 12.(1);(2),见解析;(3)不变, 【分析】 (1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数; (2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用 解析:(1);(2),见解析;(3)不变, 【分析】 (1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数; (2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用(2)的结论和平行线的性质、角平分线的性质,可求出的度数,可得结论. 【详解】 (1)因为∥, 所以, 因为∠BCD=73 °, 所以, 故答案为: (2), 如图②,过点作∥, 则,. 因为, 所以, (3)不变, 设, 因为平分, 所以. 由(2)的结论可知,且, 则:. 因为∥, 所以, 因为平分, 所以. 因为∥, 所以, 所以. 【点睛】 本题考查了平行线的性质和角平分线的定义,解题关键是熟练运用平行线的性质证明角相等,通过等量代换等方法得出角之间的关系. 13.(1);(2)①;②. 【分析】 (1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论; (2)①根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最 解析:(1);(2)①;②. 【分析】 (1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论; (2)①根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论; ②根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论. 【详解】 解:(1)∵平分,, ∴, ∴, ∴, ∴; (2)①∵, ∴∠EOC+∠COD=∠BOD+∠COD, ∴∠EOC=∠BOD, ∵,, ∴, ∴, ∴, ∴; ②∵, ∴∠EOC+∠COD=∠BOD+∠COD, ∴∠EOC=∠BOD, ∵,, ∴, ∴, ∴, ∴. 【点睛】 本题考查邻补角的计算,角的和差,角平分线的有关计算.能正确识图,利用角的和差求得相应角的度数是解题关键. 14.(1);(2)理由见解析;(3),理由见解析. 【分析】 (1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案; (2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠ 解析:(1);(2)理由见解析;(3),理由见解析. 【分析】 (1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案; (2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠DBC,则∠ABD=∠ABC−∠DBC=60°−∠1,进而得出结论; (3)过点C 作CP∥a,由角平分线定义得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行线的性质得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出结论. 【详解】 解:(1)如图1 ,, , , ; 图1 (2)理由如下:如图2. 过点作, 图2 , , , , , , ; (3), 图3 理由如下:如图3,过点作, 平分, , , 又, , , , , 又 , , . 【点睛】 本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键. 15.(1)见解析;(2);见解析;(3) 【分析】 (1)过点作,根据平行线性质可得; (2)由(1)结论可得:,,再根据角平分线性质可得; (3)由(2)结论可得:. 【详解】 (1)证明:如图1,过 解析:(1)见解析;(2);见解析;(3) 【分析】 (1)过点作,根据平行线性质可得; (2)由(1)结论可得:,,再根据角平分线性质可得; (3)由(2)结论可得:. 【详解】 (1)证明:如图1,过点作, ∵, ∴, ∴,, 又∵, ∴; (2)如图2, 由(1)可得:,, ∵的平分线与的平分线相交于点, ∴ , ∴; (3)由(2)可得:,, ∵,, ∴ , ∴; 【点睛】 考核知识点:平行线性质和判定的综合运用.熟练运用平行线性质和判定是关键. 四、解答题 16.(1)①115°;110°;②;理由见解析;(2);理由见解析 【分析】 (1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由 解析:(1)①115°;110°;②;理由见解析;(2);理由见解析 【分析】 (1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出,,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出,,由三角形的外角性质即可得出结果; ②由①得:∠EDB=∠C,,,由三角形的外角性质得出∠DGF=∠B+∠BAG,再由三角形的外角性质即可得出结论; (2)由(1)得:∠EDB=∠C,,,由三角形的外角性质和三角形内角和定理即可得出结论. 【详解】 (1)①若∠BAC=100°,∠C=30°, 则∠B=180°-100°-30°=50°, ∵DE∥AC, ∴∠EDB=∠C=30°, ∵AG平分∠BAC,DF平分∠EDB, ∴,, ∴∠DGF=∠B+∠BAG=50°+50°=100°, ∴∠AFD=∠DGF+∠FDG=100°+15°=115°; 若∠B=40°,则∠BAC+∠C=180°-40°=140°, ∵AG平分∠BAC,DF平分∠EDB, ∴,, ∵∠DGF=∠B+∠BAG, ∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG = 故答案为:115°;110°; ②; 理由如下:由①得:∠EDB=∠C,,, ∵∠DGF=∠B+∠BAG, ∴∠AFD=∠DGF+∠FDG =∠B+∠BAG+∠FDG = ; (2)如图2所示:; 理由如下: 由(1)得:∠EDB=∠C,,, ∵∠AHF=∠B+∠BDH, ∴∠AFD=180°-∠BAG-∠AHF . 【点睛】 本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键. 17.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); . 【分析】 (1)根据三角形外角等于不相邻的两个内角之和即可得出结论; (2)根据三角形内角和定理及对顶角相等即可得出结 解析:(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); . 【分析】 (1)根据三角形外角等于不相邻的两个内角之和即可得出结论; (2)根据三角形内角和定理及对顶角相等即可得出结论; (3)①根据角平分线的定义及三角形内角和定理即可得出结论; ②连结BE,由(2)的结论及四边形内角和为360°即可得出结论; (4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论. 【详解】 (1).理由如下: 如图1,,,,; (2).理由如下: 在中,,在中,,,; (3)①,,、分别平分和,,. 故答案为:. ②连结. ∵,. 故答案为:; (4)由(1)知,,,,,,,,,,,; . 【点睛】 本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键. 18.(1)∠AQB的大小不发生变化,∠AQB=135°;(2)∠P和∠C的大小不变,∠P=45°,∠C=45°. 【分析】 第(1)题因垂直可求出∠ABO与∠BAO的和,由角平分线和角的和差可求出∠BA 解析:(1)∠AQB的大小不发生变化,∠AQB=135°;(2)∠P和∠C的大小不变,∠P=45°,∠C=45°. 【分析】 第(1)题因垂直可求出∠ABO与∠BAO的和,由角平分线和角的和差可求出∠BAQ与∠ABQ的和,最后在△ABQ中,根据三角形的内角各定理可求∠AQB的大小. 第(2)题求∠P的大小,用邻补角、角平分线、平角、直角和三角形内角和定理等知识求解. 【详解】 解:(1)∠AQB的大小不发生变化,如图1所示,其原因如下: ∵m⊥n, ∴∠AOB=90°, ∵在△ABO中,∠AOB+∠ABO+∠BAO=180°, ∴∠ABO+∠BAO=90°, 又∵AQ、BQ分别是∠BAO和∠ABO的角平分线, ∴∠BAQ=∠BAC,∠ABQ=∠ABO, ∴∠BAQ+∠ABQ= (∠ABO+∠BAO)= 又∵在△ABQ中,∠BAQ+∠ABQ+∠AQB=180°, ∴∠AQB=180°﹣45°=135- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 中学 七年 级数 下册 期末 解答 综合 复习 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文